Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидравлическое сопротивление перемешивании

    Сопоставление данных по гидравлическому сопротивлению, теплоотдаче к поверхности зернистого слоя, диффузии и продольному перемешиванию при течении (см. последующие главы) позволяет более ясно понять физическую природу движения жидкости в зернистом слое при различных значениях критерия Рейнольдса. Как и в трубах, при малых значениях Ке пограничный слой заполняет все сечение поровых каналов и распределение скоростей существенно зависит от формы канала, С ростом же Ке пограничный слой сжимается и взаимодействие потока с зернистым слоем (гидравлическое сопротивление) начинает главным образом определяться формой отдельного элемента и характером его поверхности. [c.70]


    Однако, в противоположность этим достоинствам, вставки ухудшают перемешивание твердого материала и создают условия для сепарации частиц по высоте слоя, затрудняя псевдоожижение твердых частиц во всех секциях одновременно Кроме того, в присутствии горизонтальных сеток и перфорированных пластин ухудшается теплообмен слой — поверхность и повышается гидравлическое сопротивление системы. [c.531]

    Приблизить рабочую скорость потока газов на последней полке к критической и тем самым свести к минимуму количество газа в пузырях и его перемешивание можно за счет расширения верхней части реактора и, соответственно, увеличения поперечного сечения последнего слоя. Естественно, это приводит к ряду конструкционных усложнений аппарата, но такой вариант целесообразно применять при сильном ограничении возможного гидравлического сопротивления реактора. Таким образом, по второму варианту принимаем к загрузке 1-й слой = 0,75 мм 2—4-й слои = = 1,5 мм (4-й слой большего диаметра). [c.271]

    Адсорберы с кипящим (псевдоожиженным) слоем мелкозернистого адсорбента. При проведении адсорбции в кипящем (псевдоожиженном) слое адсорбента гидравлическое сопротивление слоя является весьма малым, поэтому можно создавать скорости газового потока, в несколько раз большие, чем в неподвижном слое адсорбента. Благодаря сочетанию высоких скоростей газа с очень развитой поверхностью фазового контакта можно значительно интенсифицировать процесс адсорбции. При интенсивном перемешивании частиц в кипящем слое в нем происходит быстрое выравнивание температуры и предотвращается опасность перегрева адсорбента. [c.720]

    Такие аппараты особенно пригодны для проведения медленных реакций, протекающих в кинетической области, т. е. для большей части реакций между органическими веществами. В них обеспечивается хороший контакт фаз и достаточное перемешивание, необходимое для равномерного течения реакции в объеме. Недостатки — большое гидравлическое сопротивление и необходимость нагрева больших масс жидкости при пуске аппарата. [c.273]

    Основные преимущества метода псевдоожижения — низкое гидравлическое сопротивление при высокоразвитой поверхности контакта фаз, интенсивное выравнивание температуры и высокие коэффициенты внешней теплоотдачи, хорошая текучесть — были упомянуты во введении. Конструктивные особенности аппаратов кипящего слоя и их отдельных узлов должны обеспечить максимальное использование этих преимуществ и уменьшить влияние органических, присущих методу псевдоожижения, недостатков — уноса, обратного перемешивания, эрозии. - [c.207]


    Однако чрезмерное измельчение, как и чрезмерное повышение температуры, в некоторых случаях может привести к сильному спеканию шихты. Крупные частицы меньше подвержены спеканию, так как они имеют меньшую удельную площадь поверхности и больший вес, противодействующий силе сцепления между взаимодействующими поверхностными элементами. Помимо этого, при очень мелкой шихте увеличиваются потери материалов в виде пыли, выносимой из печи уходящими газами. В печах некоторых конструкций, например в шахтных, тонкоизмельченные материалы вообще нельзя обжигать, так как сплошной слой таких материалов создает большое гидравлическое сопротивление, препятствующее движению газа. Таким образом, выбор степени измельчения обусловливается многими факторами — свойствами перерабатываемого материала, температурой обжига, конструкцией печи, условиями перемешивания и перемещения шихты и др. [c.351]

    В данном разделе рассмотрены режимы барботажа, структура барботажного слоя, гидравлическое сопротивление тарелок и приведены данные по гидродинамике отдельных типов тарелок. Далее рассмотрены гидравлика течения жидкости по тарелкам, перемешивание в барботажных абсорберах, унос жидкости и поверхность контакта фаз. [c.511]

    Влияние степени обводненности нефти на коэффициент подачи установок можно объяснить различной вязкостью откачиваемой жидкости. Известно, что наиболее мелкодисперсные высоковязкие эмульсии образуются в подъемных трубах скважин из-за интенсивного перемешивания водонефтяных смесей. Гидравлические сопротивления движению эмульсий в подъемных трубах значительно возрастают. Это, по-видимому, ведет к росту деформации колонны штанг, уменьшению длины хода плунжера и коэффициента подачи насосов. [c.107]

    Трубы необходимо устанавливать строго горизонтально, чтобы воздух при выходе из отверстий преодолевал одинаковое гидравлическое сопротивление и равномерно выходил из всех отверстий кроме того, для лучшего перемешивания и уменьшения вредных потерь рекомендуется отверстия в трубах размешать по винтовой линии. Диаметр отверстий барботера выбирают возможно меньшим для лучшего распределения воздуха в жидкости но для того чтобы не происходило засорение отверстий, они обычно имеют диаметр 3—6 мм. [c.276]

    Конкретные расчетные формулы вида (VII.40) аналогичны (VI.66) и (VI.67). При определении рабочей скорости газа ш следует учитывать, что с увеличением W возрастают коэффициенты скорости массо- и теплопередачи, но снижается движущая сила процесса катализа вследствие усиления перемешивания газовой фазы и увеличения размеров газовых пузырей. Кроме того, повышение скорости газа увеличивает гидравлическое сопротивление решетки, высоту взвешенного слоя и усиливает истираемость катализатора. Для катализа под атмосферным давлением применяют w==2Wb—Зшв в колоннах высокого давления нерационально большое увеличение высоты взвешенного слоя и потому применяют w = l,3—2Wb. Если наиболее важной задачей является теплоотдача от взвешенного слоя к теплообменникам, то w = 4wu—6wb. [c.252]

    Проточный реактор идеального смешения удобен для процессов с медленным ходом реакции, когда необходимое для превращения время составляет минуты или десятки минут. В этом случае в емкости с перемешиванием можно обеспечить необходимое достаточно большое X. Для реализации такого длительного превращения реактор ИВ должен будет представлять собой длинную узкую трубу, что приведет к большому гидравлическому сопротивлению. С другой стороны, процесс в режиме ИС менее интенсивен, чем в режиме ИВ, и требуемый объем реактора может оказаться очень большим. Компромиссом является последовательность (каскад) реакторов в режиме идеального смешения, рассмотренная далее, в разделе 5.7.1. [c.179]

    Для расчета процесса разделения в промышленных колоннах с новой насадкой необходимо экспериментально определить следующие характеристики гидравлическое сопротивление, коэффициент продольного перемешивания, удерживающую способность, требуемые для расчета ВЭТС и расчетов по диффузионной модели (глава 4). [c.173]

    Приведенный расчет выполнен без учета влияния на основные размеры ректификационной колонны ряда явлений (таких как неравномерность распределения жидкости при орошении, обратное перемешивание, тепловые эффекты и др.), что иногда может внести в расчет существенные ошибки. Оценить влияние каждого из них можно, пользуясь рекомендациями, приведенными в литературе [8, 11, 12] ив гл. 3. Последовательность приведенного расчета рекомендуется сохранить и для колонн с насадками других типов. Расчетные зависимости для определения предельных нагрузок по фазам, коэффициентов массоотдачи и гидравлического сопротивления насадок достаточно полно представлены в литературе [I, 11] и в гл. 5. [c.237]


    Из выражения (10.19) видно, что можно увеличить либо путем уменьшения радиуса вращения газового потока, либо увеличением его скорости, что сопряжено со значительным возрастанием гидравлического сопротивления и увеличением турбулентности газового потока (которая ухудшает процесс осаждения и способствует перемешиванию очищенного газа с запыленным). В то же [c.219]

    Затраты энергии на перемешивание рассчитываются по известным величинам V и Ар (либо по степени сжатия газа), как это было показано в гл.4. В частности, при небольших гидравлических сопротивлениях Ар, значительно уступающих абсолютным давлениям газа, мощность компрессора (газодувки, вентилятора) определяется по формуле (4.31)  [c.443]

    Процесс каталитического крекинга осуществляется в двухфазной системе газ (или пары) — твердое тело. Для аппаратов с микросферическим катализатором наблюдается несколько состояний двухфазной системы в зависимости от параметров процесса. При малых линейных скоростях газ или пар проходит через слой катализатора, фильтруясь через каналы между частицами твердого вещества. Если повысить скорость газового потока, то наступает момент, когда силы газодинамического воздействия становятся равными массе слоя твердых частиц, которые начинают при этом хаотично перемещаться друг относительно друга. Дальнейшее увеличение скорости газа приводит к интенсивному перемешиванию и расширению слоя твердых частиц — частицы как бы кипят , образуя псевдоожиженный слой. Эффективность псевдоожижения зависит от многих факторов плотности, формы, размеров и фракционного состава частиц, характеристик газового потока, конструкции газораспределителей, эжекторов, распылительных форсунок и других параметров. На практике псевдоожиженный слой характеризуется концентрацией твердых частиц, скоростью нача.т1а ожижения, интенсивностью массо- и теплообмена, уносом частиц из слоя, перепадом давления в слое и др. Под скоростью начала ожижения понимается скорость, которая соответствует состоянию, когда гидравлическое сопротивление слоя Микросферического катализатора, расположенного в реакторе. Уравновешивается весом ожижаемого слоя твердых частиц. Рабочая скорость ожижения с точки зрения эффективного массо- и [c.67]

    А — коэффициент В — безразмерный коэффициент Ь — ширина элемента аппарата, м С — коэффициент гидравлического сопротивления В — диаметр аппарата, м коэффициент диффузии, м /с коэффициент продольного перемешивания, м /с (1 — диаметр элемента аппарата (трубы), насадочно-го тела, межзернового канала, м [c.511]

    Совместное течение пара и жидкости в пленочной колонне носит сложный характер. Объектами исследования гидродинамики жидкой фазы являются толщина пленки, закономерности процессов волнообразования на ее поверхности и, как следствие, развитие поверхности межфазного контакта и перемешивание жидкости в пленке. При исследовании гидродинамики паровой фазы выявляются границы характерных режимов, соответствующих, как будет показано ниже, тому или иному режиму массообмена и. кроме того, определяются гидравлическое сопротивление колонн и предельные нагрузки. [c.38]

    Максимальное гидравлическое сопротивление функции О2 — улавливание вредных примесей — определяется условиями ввода газа в жидкость (В21) и их перемешивания (В22). Эти процессы происходят главным образом в завихрителе, поэтому на творческой стадии ФСА ставится цель улучшения его гидродинамических характеристик, которые в основном зависят от конструкции лопаток завихрителя и их взаимного расположения. Расшифровку такой зависимости можно представить в виде следующей морфологической матрицы  [c.230]

    Модели с неравнодоступными объемами хорошо объясняют качественные особенности не только процессов перемешивания, но и закономерности внешней гидравлики насыпанного зернистого слоя. Поскольку диффузия в застойных зонах в значительной степени определяется молекулярным переносом, то становится понятной наблюдаемая сильная зависимость коэффициента продольной дисперсии от коэффициента диффузии Dr примеси в основном потоке. По мере повышения скорости потока в основных каналах между зернами в застойных зонах появляются циркуляционные течения [18] и их относительный объем снижается, что проявляется в приближении гидравлического сопротивления (см. раздел II. 8) и теплоотдачи от зерен (см. раздел IV.5) к их значениям для одиночного зерна уже при Кеэ > 50. [c.90]

    VII. Основные технологические параметры ХТП и производства. В этом разделе наряду с указанием для каждого ХТП и аппарата основных технологических параметров (давление, температура, объемная и линейная скорости, степень насыщения, степень диспергирования, концентрации веществ в растворах, скорости расслаивания, размеры газанул и кристаллов, допустимое влагосодер-жание) отмечаются технологические условия приготовления и регенерации катализаторов, адсорбентов, растворителей и реагентов, которые осуществляются на данном объекте химической промышленности. Кроме того, приводятся сведения о механической прочности и гидравлическом сопротивлении применяемых катализаторов и адсорбентов условия образования осадков, полимеров и пены, методы предотвращения их образования и методы их удаления рекомендации по характеру перемешивания жидкостных сред рекомендации по значениям флег-мовых чисел и плотностей орошения для специальных процессов разделения [c.19]

    Если пластинки коагулятора расположены близко одна к другой и имеется большое число карманов, то возрастают интенсивность перемешивания и центробежные силы, увеличивается поверхность для сбора капель. Одновременно увеличивается перепад давления в сепараторе. Таким образом, при данной скорости потока эффективность улавливайия капель в сепараторе — некоторая функция перепада давления в нем. Обычно гидравлическое сопротивление сепараторов равно 25,4 + 254 мм вод. ст. [c.90]

    Помимо работы пластинчатых тарелок в интенсивном капельном режиме к числу их достоинств относятся низкое гидравлическое сопротивление, возможность работы с загрязненными жидкостями, низкий расход металла при их изготовлении. На тарелках этого типа уменьшается продольное перемешивание жидкости, что приводит к увеличению движущей силы массопередачи. Недостатками пластинчатых тарелок являются трудность отвода и подвода тепла, снижение эффективности при небольших расходах жидкости. В настоящее время разработан ряд других конструкций тарелок с однонаправленным движением жидкости и газа, описание которых приводится в специальной литературе .  [c.455]

    Процесс димеризации ацетилена можно проводить в различных реакторах, но все они должны обеспечивать хорошее перемешивание ацетилена и катализатора, а также иметь минимальное гидравлическое сопротивление катализатора для обеспечения безопасных условий работы. В производственных условиях лучше всего зарекомендовали себя аппараты барботажного типа. Они просты по конструкции. Для увеличения поверхности контакта ацетилена с катализатором в нижней части реактора устанавливают газорас-пределители с тангенциальным вводом газа. [c.227]

    Наибольшую трудность представляет определение оптимального числа взвёшивапия ио1ю . Понятно, для производственных условий действительная скорость должна быть значительно выше скорости взвешивания Ша и много меньше скорости, соответствующей уносу зерен и у особенно это относится к полидисперсным материалам. Следует учитывать, что при росте ю снимаются внешнедиффузионные торможения и растет к [в формуле (1)], но одновременно уменьшается Ас вследствие перемешивания газовой фазы и растет гидравлическое сопротивление слоя, так как при данной объемной скорости высота исходного слоя Но пропорциональна IV. Увеличение т вызывает рост HyJ и, следовательно, рост общей высоты аппарата сильно возрастает истирание зерен. Для выравнивания температуры в слое IV должна быть в среднем раза в два больше, чем г в, а максимальные коэффициенты теплопередачи от взвешенного слоя к теплообменным поверхностям достигаются при и /ц в 4—6 [9, 10]. Следо вательно, оптимальное число взвешивания (и размер зерен катализатора) следует определять на основе многократных технологических и экономических расчетов с учетом противоречивого влияния 1р1юв на различные параметры технологического режима. [c.296]

    Затраты электроэнергии на перемешивание реагирующих масс можно снилсать уменьшением скоростей потоков реагентов или числа оборотов мешалок, но этот прием обычно связан с уменьшением интенсивности работы реактора и снижением степени превращения. Понижение энергетических затрат на транспорт газов и жидкостей достигается главным образом снижением гидравлического сопротивления реактора и, в первую очередь, упрощением конструкции. Для наилучшего использования теплоты в реактор вставляют теплооб-менпые элементы, что усложняет его конструкцию. На рис. 19 приведена кривая роста гидравлического сопротивления аппарата данной конструкции АР при возрастании объемной скорости V (за счет линейной скорости ш, пропорциональной V). Увеличение интенсивности работы аппарата находится в иритиворечии с энергетическими затратами, характеризуемыми отношением ДЯ /. [c.79]

    Газ из газопровода поступает в регулятор 5, где давление его снижается до определенной величины. Это давление поддер-лшвается равным атмосферному нли близким к нему. На пути к горелке газ преодолевает специально созданное гидравлическое сопротивление, показанное на схеме условно в впде короткой узкой трубки 4 (стабилизирующее сопротивление). Далее газ попадает во всасывающую камеру горелки, где увлекается струей воздуха, поступающего через сопло 1. В смесителе горелки 2 происходит процесс перемешивания газа и воздуха, после чего [c.177]

    Изотермичность КСК является результатом его чрезвычайно высокой теплопроводности, в тысячи раз превышающей теплопроводность неподвижного слоя (см. гл. 2), а теплопроводность обусловлена перемешиванием твердых частиц (см. гл. 1). Вследствие высокой теплопроводности КСК в него можно устанавливать трубы парового котла или водяные холодильники, что недопустимо в условиях неподвижного слоя, так как приводит к переохлаждению прилегающих к трубам зерен катализатора и последующему затуханию реактора. Коэффициенты теплоотдачи от КСК к теплообменной поверхности могут быть в 10—20 раз выше, чем от неподвижного слоя или от газового потока, в результате сильно уменьшаются поверхности теплообменников в КСК Вследствие высокой теплопроводности КСК и благодаря применению мелкозернистого катализатора снимаются локальные перегревы и переохлаждения зерен, свойственные неподвижному слою. В неподвижном слое нерационально применять катализатор с размером зерен (таблеток) менее 4—5 мм из-за резкого возрастания гидравлического сопротивления АРс. В результате наблюдается внутридиф-фузионное торможение в порах зерен катализатора, и степень использования внутренней поверхности зерен в ряде каталитических процессов составляет 0,5 и ниже. В КСК АРс не зависит от размера зерна, поэтому целесообразно применять зерна такого размера, при котором достигается максимальная степень превращения. [c.262]

    Барботажные устройства (рис. 10.3,в) используются в процессах массопереноса наиболее часто. Такое устройство представляет собой секцию, заполненную до определенной высоты жидкой фазой в нижней части секции размещено газо-(паро-)распределительное устройство ( тарелка ) — колпачковое, ситчатое, клапанное или другое (на рисунке эти конструкции показаны схематически). Газовая фаза диспергируется в этом устройстве (это приводит к увеличению поверхности межфазного контакта) и барботирует через слой жидкости. Число колпачков и клапанов на тарелке достигает десятков (в крупных аппаратах — сотен). Ситчатые устройства обычно отличаются меньшим гидравлическим сопротивлением газовому потоку они, однако, весьма чувствительны к загрязнениям. Над жидкостью расположена сепарационная зона, снижающая унос капель газовым (паровым) потоком, т.е. перемещение жидкости в направлении, противоположном движению ее основного потока (обратное перемешивание в терминах структуры потоков). Жидкость организованно, через сливные трубки или карманы, транспортируется на расположенную ниже секцию (непровальные тарелки) либо — в отсутствие сливных устройств — уходит с тарелки за счет провала через отверстия по законам истечения (ситчатые провальные тарелки). Скорость газа в барботажных устройствах ограничена возникновением заметного уноса капель газовым (паровым) потоком. [c.747]

    Технико-экономические показатели ЭЛОУ значительно улучшаются при применении более высокопроизводительных электродегидраторов за счет уменьшения количества теплообменников, сырьевых насосов, резервуаров, приборов КИП и А и т.д. (экономический эффект от укрупнения) и при комбинировании с установками прямой перегонки нефти за счет снижения капитальных и энергозатрат, увеличения производительности труда и т.д. (эффект от комбинирования). Так, комбинированный с установкой первичной перегонки нефти (АВТ) ЭЛОУ с горизонтальными электродегидратора-ми типа 2ЭГ-160, по сравнению с отдельно стоящей ЭЛОУ с шаровыми, при одинаковой производительности (6 млн т/г) имеет примерно в 1,5 раза меньшие капитальные затраты, эксплуатационные расходы и себестоимость обессоливания. В последние годы за рубежом и в нашей стране новые АВТ или комбинированные установки (типа ЛК-бу) строятся только с встроенными горизонтальными элек-тродегидраторами высокой единичной мощности. В настоящее время разработан и внедряется горизонтальный электродегидратор объемом 200 м типа 2ЭГ-200 производительностью = 560 м ч (D = 3,4 м и L=23,5 м) и разрабатывается перспективная его модель с объемом 450 м с улучшенной конструкцией электродов. Одновременно с укрупнением единичных мощностей происходило непрерывное совершенствование конструкции электродегидраторов и их отдельных узлов, заключающееся в улучшении интенсивности перемешивания нефти с деэмульгатором и водой, снижении гидравлического сопротивления, оптимизации места ввода нефти и гидродинамической обстановки, организации двойного или тройного ввода нефти и т.д. [c.187]

    Сначала использовали полочный реактор (рис. 5.25, ). Колчедан располагается на полках и воздух проходит через неподвижные слои. Естественно, колчедан - кусковой (тонко измельченный создавал бы значительное гидравлическое сопротивление и мог легко слипаться, что создавало бы неоднородное горение). Чтобы сделать обжиг непрерывным процессом, твердый материал передвигается специальными гребками, вращающимися на валу, расположенном по оси аппарата. Лопатки фебков перемещают куски колчедана по тарелкам поочередно от оси аппарата к его стенкам и обратно, как показано на рисунке стрелками. Такое перемешивание одновременно предотвращает слипание частиц. Свежий колчедан непрерывно подается на верхнюю полку. Огарок также непрерывно выводится с низа реактора. Механический реактор обеспечивает интенсивность процесса, измеряемую количеством колчедана, проходящего через единицу сечения реактора, - не более 200 кг/(м ч). В таком реакторе движущиеся скребки в высокотемпературной зоне усложняют его конструкцию, создается неодинаковый температурный режим по полкам, трудно организовать отвод тепла из зоны реакции. Трудности теплосъема не позволяют получить обжиговый газ с концентрацией 802 более 8 - 9%. Основное ограничение - невозможность использования мелких частиц, в [c.424]

    Перепое вещества в насадочных ректифпкацпонных колоннах непосредственно связан с гидродинамикой двухфазных потоков. К числу важнейших гидродинамических характеристик ыаса-дочных колонн относятся удерживающая способность, гидравлическое сопротивление, пропускная способность и продольное перемешивание. [c.73]

    В пределах этого режима, как видно из графиков, происходит. некоторое увеличение гидравлического сопротивления аппарата, связанное сростом количества удерживаемой им жидкости (см. рис. П1.6). Увеличивается также- динамическая высота (см. рис. П1.7) и газосодержание слоя (см. рис. ПГ.8). Высокие значения газосодержания (до 0,9) свидетельствуют о том, что в этом режиме дбстигается хорошее перемешивание фаз. [c.139]

    Распределение газа в полых скрубберах. Многие исследователи п 5идают большое значение равномерности распределения газа по поперечному. сечению скруббера. Ф. А. Кульков и Е. Л. Яхонтова [20] изучали этот вопрос в колоннах диаметром 250 и 400 мм при отношении /1а.з/< ап= 1,4, используя вместо газа вбду. Они установили, что при боковом вво 1е таз направляется к противоположной стенке аппарата, поднимается до его верха и затем спускается вдоль передней стенки На некотором расстоянии от входа наблюдается полное перемешивание газа. Вследствие этого авторы приходят к выводу о низкой эффективности полых колонн и предлагают для выпрямления потока устанавливать в ее нижней части слой насадки. И. Е. Идельчик [21 ] предлагает использовать для этой цели направляющие лопатки. В. М. Рамм [4] также придерживается точки зрения, что неравномерность распределения газа снижает эффективность полого скруббера. Это положение, однако, до сих пор не имеет практического подтверждения. В случае, когда перемешивание фаз не влияет на движущую силу процесса, неравномерность распределения газа может сыграть даже положительную роль. Отдельные капли, Попадая за счет поперечных пульсаций газа из зон высоких скоростей газового потока в зоны низких скоростей или в зоны возвратного движения, могут за счет изменения своего движения увеличить время контакта с газом. Следует отметить, что организация специальных устройств для выпрямления газового потока несколько повышает гидравлическое сопротивление скруббера, а при работе с загрязненными средами может и затруднить эксплуатацию установки. Как показано в [14], в колонне диаметром 1 м на расстоянии 3,6 м от оси входного газохода распределение таза носит е неравномерный характер, несмотря на наличие направляющих лопаток. В то же время в колонне диаметром 2 м без направляющих лопаток происходит самопроизвольное выпрямление газового потока на расстоя- -НИИ 7 м от оси входного газохода [18]. Поскольку демонтаж направляющих лопаток в колонне диаметром 5,5 м никак не повлиял [16] на показатели абсорбции фтористого водорода содовым раствором (см. рис. У.б), то можно считать, что установка направляющих лопаток в полых скрубберах является излишним мероприятием. Также сомнительна и целесообразность организации специального слоя насадки. [c.229]


Смотреть страницы где упоминается термин Гидравлическое сопротивление перемешивании: [c.38]    [c.188]    [c.325]    [c.272]    [c.483]    [c.106]    [c.14]    [c.468]    [c.96]    [c.38]    [c.208]    [c.524]   
Процессы и аппараты химической технологии Часть 1 (1995) -- [ c.155 , c.158 ]




ПОИСК





Смотрите так же термины и статьи:

Гидравлическое сопротивление



© 2025 chem21.info Реклама на сайте