Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дивинилбензола сополимеры, применение

    Для проведения процесса электровосстановления используют рамные электролизеры фильтр-прессного типа на нагрузку 2 и более кА. Катодом служит свинец, анодом — сплав свинца с серебром, устойчивый в серной кислоте. Анодное пространство от катодного отделяют ионообменной диафрагмой, селективно проницаемой для ионов водорода. Ионообменная диафрагма представляет собой сульфированный сополимер стирола и дивинилбензола. Благодаря применению ионообменных диафрагм практически исключаются потери соли Макки и акрилонитрила в анодное пространство. [c.227]


    Отмеченные свойства выгодно отличают полисорбы N от других полимерных сорбентов. Исследуемые сополимеры винилпиридинов и дивинилбензола находят применение в ионообменной хроматографии — они являются низкоосновными анионитами с третичным атомом азота в качестве ионогенной группы, обладают высокой механической прочностью и хорошими кинетическими свойствами в процессах ионного обмена, высокой устойчивостью к химическим, термическим и радиационным воздействиям. Это свидетельствует об универсальности указанных пористых полимеров — возможности использования одних и тех же образцов в различных вариантах хроматографии. [c.65]

    Следует отметить, что исследуемые сополимеры винилпиридинов и дивинилбензола находят применение в ионообменной хроматографии, они являются низкоосновными анионитами с третичным ато- [c.14]

    Данная глава была посвящена исследованию полимераналогичных превращений набухшего сополимера (фосфорилирования и сульфирования) с применением топологического метода моделирования ФХС. Особенность реакций фосфорилирования и сульфирования сополимеров стирола с дивинилбензолом состоит в локализации реакционной зоны на границе раздела двух областей твердой фазы исходного вещества (сополимера) и готового продукта (ионита). При этом полимераналогичные превращения сополимеров сопровождаются явлениями различной физико-химической природы, различным образом локализованных в пространстве. Существуют определенные трудности в идентификации отдельных [c.368]

    Газовая адсорбционная хроматография отличается большей термической стабильностью неподвижных фаз — адсорбентов и может успешно применяться как при высоких температурах для анализа высококипящих соединений, так и при низких — для анализа природных и нефтяных газов. Для анализа слабо адсорбирующихся молекул газон и легкокипящих углеводородов используют адсорбенты с большой удельной поверхностью— цеолиты, тонкопористые силика ели. ГТо мере увеличения объема анализируемых молекул необходимо применять все более макропористые адсорбенты с менее развитой поверхностью. Выпуск однородных адсорбентов, в частности цеолитов и пористых полимеров, так называемых пор ап а ков, на основе сополимеров стирола, этилстирола и дивинилбензола позволил уменьшить несимметричность пико и расширить область применения ГАХ. [c.89]


    Полистирол и сополимеры стирола с акрилонитрилом и бутадиеном, с винилнафталином, дивинилбензолом и другими веществами получили широкое применение. На долю полистирола приходится около 18% мирового производства пластмасс. Формула полистирола [c.343]

    Среди новых направлений в развитии газо-адсорбцион-ной хроматографии, обусловливающих расширение ее аналитических возможностей, следует отметить применение пористых полимерных сорбентов Л. 149—152]. В настоящее время для газовой хроматографии начинают применять пористые материалы на основе сополимеров стирола, этилстирола и дивинилбензола. [c.108]

    В ближайшие годы предстоит широкое внедрение овых марок ионита на ионитных установках электростанций. Из катионитов наряду с сульфоуглем получит применение сильнокислотный катионит КУ-2, синтезированный на основе дивинилбензола и полистирола. В отдельных случаях возможно использование катионита суль-фо-фенольного типа (катионит КУ-1). Из слабоосновных анионитов главным образом будут применять анионит АН-31. Для обескремнивания воды в цикле ее химического обессоливания получит применение сильноосновный анионит первого типа (анионИт АВ- 17-8, приготовленный с использованием метилаля для набухания сополимера) (продолжение см. стр. 58, 60 и 62). [c.49]

    В настоящее время получили наибольшее распространение и применение катиониты, представляющие собой сульфированные полимеры фенолформальдегидных смол и сополимеров стирола и дивинилбензола, и аниониты — продукты сополимеризации стирола и дивинилбензола, содержащие функциональные группы основного характера, чаще всего аминные группы. Известно очень большое количество различных марок ионообменных смол, отличающихся степенью кислотности или основности. Более [c.68]

    Большое технологическое значение может иметь применение пористых сополимеров стирола и дивинилбензола и ионитов на их основе в сорбционной технике для извлечения из водных растворов таких органических веществ, как детергенты, фенолы, эмульгаторы, аминокислоты, белки, а также для удаления больших ионов антибиотиков и даже частиц коллоидных размеров из водных растворов [3]. [c.9]

    В жидкостной хроматографии высокого давления нашли применение пористые полимерные сорбенты на основе сополимеров полистирола и дивинилбензола [119—121]. Эти сорбенты характеризуются большой величиной удельной поверхности ( 800 жесткой структурой и хорошей [c.21]

    Наибольшее промышленное применение имеет способ получения катионитов путем полимераналогичных превращений высокомолекулярных соединений, не содержащих ионогенных групп в макромолекуле. Для этой цели в качестве исходных матриц используют главным образом суспензионные сополимеры стирола с дивинилбензолом. [c.19]

    Значительный интерес представляют селективные полиамфолиты, получаемые при взаимодействии хлорметилированного сополимера стирола с аминогруппами а-аминокислот. Однако они хорошо набухают только в кислых и щелочных растворах. В нейтральной области pH аминокислотные группировки находятся в цвиттер-ионной форме, между их положительно и отрицательно заряженными группами возникает большое число солевых связей. В результате этого в нейтральных растворах такие смолы практически не набухают даже при минимальном содержании дивинилбензола (ДВБ) (0,3—0,8%). Этот недостаток можно устранить, если исходный сополимер стирола с ДВБ подвергнуть набуханию в дихлорэтане и ввести в него 7—10% дополнительных поперечных связей, например с помощью монохлордиметилового эфира. Вопреки обычным представлениям, такое дополнительное сшивание приводит к повышению степени набухания амфотерных смол аминокислотного типа в нейтральных средах, что делает возможным их успешное применение, например в лигандообменных хроматографических процессах. [c.85]

    В последние годы все большее применение в, качестве катализатора алкилирования фенолов находят катионообменные смолы. Из отечественных катионитов для этой цели используют сульфо-уголь,, сульфированную фенолоформальдегидную смолу (КУ-1), сульфированный сополимер стирола с дивинилбензолом (КУ-2) л другие. Катионообменные смолы по сути являются высокомоле- [c.221]

    Сополимеры стирола и дивинилбензола, сшитые в присутствии инертного разбавителя, находят широкое применение в различных областях хроматографии. Это прежде всего область ионообменной хроматографии. Макропористые смолы не заменяют обычные стандартные смолы. И те и другие используются в определенных областях. Однако макропористые смолы имеют исключительные свойства. Вследствие большой пористости диффузия реагентов в них облегчена, поэтому в макропористые смолы можно ввести большое число функциональных ионогенных групп, т. е. увеличить их обменную емкость. [c.8]


    Применение макропористых синтетических адсорбентов позволило существенно расширить круг соединений, определяемых по данной схеме. На полимерном адсорбенте лабораторного производства полисорб-2-6, представляющем собой сополимер стирола и дивинилбензола с удельной поверх- [c.145]

    Промышленное применение получил процесс алкилирования фенола высшими олефинами на катионите КУ-2 - сульфированном сополимере стирола с дивинилбензолом. Принципиальная технологическая схема процесса представлена в монографии [255]. Алкилирование фенола олефиновой фракцией 90-140 С, полученной крекингом к-парафинов, проводится при 125-135 °С, [c.125]

    Одним из наиболее сложных вопросов химии полимеров является фракционирование и анализ ММР гомополимеров и сополимеров олефинов. Эти полимеры растворимы при достаточно высоких (выше 100 °С) температурах, а интерпретация данных ГПХ для них обычно осложняется особенностями их структуры, такими, как разветвленность цепей (ответвления могут быть как длинно-, так и короткоцепочечными), гетерогенность и кристалличность. Следовательно, вполне естественно, что со времени создания ГПХ появилось множество работ по применению этого перспективного метода в столь трудной области. В настоящее время точно установлено, что насадку из стирогеля можно использовать при температурах значительно выше 100 °С при условии, что растворитель непрерывно насыщается инертным газом и содержит достаточное количество антиоксиданта для предотвращения деструкции образцов и колонки. Тем не менее всегда наблюдается определенное снижение эффективности колонки, и время от времени необходимо проводить ее повторную калибровку. Некоторые исследователи предпочитают для ГПХ при высоких температурах использовать в качестве насадки пористое стекло или силикагель, однако в большинстве работ обычно используют гранулы сополимера стирола с дивинилбензолом.. [c.288]

    Из многочисленных сополимеров стирола с различными мономерами наибольшее распространение получили сополимеры с бутадиеном, сополимеры с акрилонитрилом, сополимеры с дивинилбензолом. Ограниченное применение находят тройные сополимеры бутадиена и стирола с метакриловой кислотой (карбоксилатные каучуки) и некоторые другие сополимеры. [c.271]

    Пористые сополимеры стирола с дивинилбензолом находят применение в газовой хроматографии как адсорбенты в чистом виде (см. разд. 3.5), так и в качестве адсорбентов-носителей. Нанесение жидкости позволяет изменять селективность разделения, сократить в некоторых случаях время разделения и повысить эффективность колонны. Пористые полимеры в большинстве случаев являются неоднороднопористыми адсорбентами, поэтому нанесение жидкости приводит к повышению геометрической однородности адсорбента только в тех случаях, когда разделяемые вещества не растворяются в нанесенной жидкости. В ряде работ [31—35] нанесение жидкости в количестве до 10% на пористые полимеры проводили с целью повышения эффективности разделения. При нанесении больших количеств жидкости можно в сильной степени изменять [c.130]

    Получение ионитов аминированием галоидметилированного сополимера стирола и дивинилбензола нашло применение и в синтезе нерастворимых полимеров с оптически активными группировками, обладающими асимметрической структурой [ ]. Аниониты такой структуры можно применять для разделения оптических антиподов [1 1. [c.104]

    Сорбционные и хроматографические процессы, основанные на использовании эксклюзионных (молекулярно-ситовых) явлений — одно из важнейших современных средств фракционирования. Применение в анализе нефтяных ГАС твердых молекулярных сит (цеолитов, широкопорнстых силикагелей и стекол с узким распределением пор по размерам) ограничено из-за сильного проявления адсорбционных эффектов, которые часто действуют противоположно ситовым эффектам, что ухудшает результаты чисто эксклюзионного разделения в соответствии с размерами и формой молекул [109]. Наибольшее распространение получили методы эксклюзионного разделения па пористых, набухающих в растворителях органических полимерах (пространственно сшитых сополимерах стирола и дивинилбензола, полидекстранах и т. д.) или неорганических макропористых сорбентах с поверхностью, модифицированной прочно сорбированной или химически связанной неполярной органической стационарной фазой [117]. [c.16]

    Среди различных способов синтеза селективных ионитов широкое практическое применение нашел способ полимераналогич-ных превраш,ений полимеров (сополимеров), не содержащих ионогенных групп. В качестве матриц для таких превращений используют сшитые дивинилбензолом (ДВБ) сополимеры стирола и его производных. [c.333]

    Полистирол обладает хорошими электроизоляционными свойствами и большой химической стойкостью. Он применяется для изготовления деталей электро- и радиотехнической аппаратуры, пе-нэпластов, пластмассовых изделий общего назначения. Широко используются сополимеры стирола с акрилонитрилом, дивинилбензолом, Ы-винилкарбазолом. Одной из важнейших областей применения стирола является производство синтетических каучуков С КС путем сополимеризации стирола с бутадиеном. [c.478]

    Все большее применение находят сополимеры стирола и ди-вииилбензола, имеюш,ие сетчатую структуру. В данном случае звенья дивинилбензола служат поперечными мостиками между цепями макромолекул  [c.526]

    Способностью к ионному обмену обладают некоторые природные соединения, например алюмосиликаты. Однако более широкое применение получили синтетические ионообменники, которыми обычно служат полимерные материалы. В качестве примера полимеров, служащих основой (матрицей) для ионитов, можно назвать сополимеры сти-)ола с дивинилбензолом и метакриловой кислоты с дивинилбензолом. онит состоит из матрицы, на которой имеется большое число функциональных групп. Последние или вводятся в мономер или в реакционную смесь при полимеризации, или прививаются к полимеру после полимеризации. Функциональные группы способны диссоциировать в растворе, при этом ионы одного знака заряда остаются на ионите, а ионы другого знака заряда переходят в раствор. В зависимости от того, какие ионы переходят в раствор, различают катиониты и аниониты. [c.348]

    Неподвижная фаза. Способностью к ионному обмену обладают некоторые минеральные материалы. Среди них цеолиты (анальцит, фозажит, стильбит), глинистые материалы (каолинит, монтмориллонит, слюды, силикаты). Такой способностью обладают также синтетические неорганические иониты (иониты на основе циркония, оксида алюминия), а также специально приготовленные сульфированные угли. Нашедшие наибольшее практическое применение ионообменные смолы состоят как бы из двух частей матрицы (каркаса), не участвующей в ионном обмене, и ионогенных групп, структурно связанных с матрицей. Такой матрицей чаще всего является сополимер дивинилбензола и полистирола. Дивинилбензол как бы сшивает поперечными связями цепи полистирола, что приводит к образованию зерен полимера, пронизанных порами. [c.604]

    Как известно, пористость является макромолекулярной характеристикой пористых материалов, В случае полимеров пористость обусловлена применением специальных приемов сохранения каркаса, часто образующегося в процессе полимеризации или изготовления изделия. Эти приемы определяются, разумеется, конкретными особенностями каждой полимерной композиции. Это легко рассмотреть, в частности, для случая полимерных сорбентов на основе сополимеров стирола, этилстирола и п-дивинилбензола, которые получили наибольшее распространение в практике молекулярной хроматографии. Сополимеризация этих мономеров осуществляется в присутствии инертных не-иолимеризующихся разбавителей, не встраивающихся в полимерные цепи, которые являются хорошими растворителями мономеров и плохими растворителями полимера. Сополимеризация, например, этилстирола и дивинилбен-зола протекает по следующей схеме  [c.5]

    Весьма перспективным является применение в качестве сшивающего агента диизопропенилбензола [55], обеспечивающего получение полимерных матриц изопо-ристой структуры, лишенных недостатков сополимеров стирола с дивинилбензолом гелевой структуры. [c.23]

    Промышленное применение получил метод сополимеризации эфиров акриловой и метакриловой кислот и дивинилбензола с последующим омылением сложноэфирных групп сополимера до карбоксильных. Таким образом получают катиониты КБ-2 и КБ-4. Реакция легко регулируется при различном соотношении мономеров. [c.43]

    Слабоосновный анионит АН-15 получают нитрованием сополимера стирола с дивинилбензолом азотной кислотой и последующим восстановлением нитрогрупп до аминогрупп при действии металлического олова и кипящей соляной кислоты. Однако этот способ связан с необходимостью использовать агрессивные вещства, вызывающие частичную деструкцию сополимера, поэтому промышленного применения он не получил. [c.61]

    В настоящее время в качестве матриц находят также применение сополимеры дивинилбензола с акриловой кислотой. Другие винильные соединения (вииилпиридин, винилнафталин и т. п,) редко используют для синтеза ионообменных матриц. [c.14]

    В жидкостной хроматографии высокого давления нашли применение пористые полимерные сорбенты на основе сополимеров полистирола и дивинилбензола [119—121]. Эти сорбенты характеризуются большой величиной удельной поверхности ( 800ж г), жесткой структурой и хорошей адсорбционной способностью. Они использованы, в частности, для разделения органических оснований [120], бензола, бензойной кислоты и ее эфиров, фенола, анизола, метилзамещенных фенолов и анилинов [121]. [c.21]

    При использовании активного угля, сажи, элюирование углеводородов происходит в соответствии с молекулярной массой. Получены неполярные углеродные молекулярные сита, при применении которых вода элюируется раньше метана. Адсорбенты-сополимеры стирола или этилстиро-ла и дивинилбензола, также слабо удерживают воду. Хорошее разделение и быстрый анализ смесей низкокипящих углеводоро- [c.68]

    Продукты прививки стирола к полиэфирам и алкидным смолам и аналогичные продукты, полученные при прививке других виниловых мономеров, имеют промыщленное применение. Полиэфиры получаются поликонденсацией ненасыщенных двухосновных кислот и насыщенных гликолей или насыщенных двухосновных кислот и ненасыщенных гликолей. В качестве ненасыщенных кислот (или их ангидридов) в реакциях поликонденсации использовали малеиновую, фумаровую, итаконовую, меза-коновую и мс-3,6-эндометилеи-А -тетрагидрофталевую (продукт присоединения циклопентадиена и малеинового ангидрида) кислоты. Бутен-диол-1,4 был использован в качестве ненасыщенного гликоля. Для синтеза привитых сополимеров, кроме стирола, применяли винилацетат, акрилаты и метакрилаты, винилтолуол и аллиловые соединения, а также смеси мономеров, например смесь стирола с метилметакрилатом, и различные бифункциональные мономеры, например дивинилбензол и диаллилфталат. Наибольшее применение получил продукт прививки стирола к полиэфиру малеиновой кислоты. [c.273]

    Возможность применения экстракционно-хроматографических колонок, содержащих пропитанный раствором НгОг. в I4 макропористый сополимер стирола с дивинилбензолом, изучили Спе-вачкова и Криванек [25—28]. Были проведены предварительные эксперименты по определению элюируемых объемов Vm, из которых по уравнениям (2) и (6) рассчитана константа экстракции дитизоната цинка. Наилучшее совпадение значений Кех с данными, полученными экстракционным методом, было достигнуто в том случае, когда за объем неподвижной органической фазы принимали объем набухшего геля (носитель+разбавитель+дити-зон). Авторы объяснили эти результаты образованием внутреннего раствора дитизона в геле , хотя можно найти и другие возможные объяснения. [c.407]

    Сравнение разделяющей способности сульфатной и хлоридной форм сильноосновных анионообменников по отношению к моносахаридам и дезоксисахарам проведено в работе [28]. В другой работе этих же авторов [64] сообщается о применении сульфированных сополимеров стирола и дивинилбензола в литиевой, натриевой и калиевой формах для разделения углеводов. В табл. 22.2 приведены полученные авторами коэффициенты объемного распределения сахаридов, которые можно использовать для выбора соответствующей формы смолы. При проведении работы авторы применяли растворы этанола различной концентрации. Изучаемые смеси сахаров включали альдитолы и некоторые простые алифатические карбонильные соединения [27]. [c.85]


Смотреть страницы где упоминается термин Дивинилбензола сополимеры, применение: [c.58]    [c.528]    [c.187]    [c.306]    [c.311]    [c.246]    [c.38]    [c.510]   
Химия окружающей среды (1982) -- [ c.545 ]




ПОИСК





Смотрите так же термины и статьи:

Дивинилбензол

Дивинилбензол, сополимеры



© 2024 chem21.info Реклама на сайте