Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химические превращения Скорость химической реакции

    Рассмотрим гомогенные системы, в которых реагенты находятся в одной фазе (газовой или жидкой) и в которых диффузионные процессы не оказывают влияния на скорость превращения. В таких случаях скорость превращения определяется скоростью химической реакции. По -му компоненту продуктов в расчете на [c.206]

    Еще в прошлом веке было найдено много реакций, которые ускоряются при добавлении некоторых посторонних веществ, напрнмер омыление эфиров ускоряется в присутствии кислот, а разложение бертолетовой соли происходит быстрее при добавлении перекиси марганца. Изменение скорости химической реакции под влиянием веществ, которые сами не являются участниками реакции, называется катализом. Эти вещества — катализаторы — влияют при их добавлении в весьма малых количествах. Иногда одна весовая часть катализатора вызывает превращение 10 —10 частей реагирующих веществ. Катализаторы могут увеличивать скорость некоторых реакций в тысячи и даже в миллионы раз. Разумеется, что такое ускорение при помощи катализаторов может осуществляться лишь при термодинамически возможных реакциях. Если данная реакция термодинамически невозможна, то применение катализатора ие приведет к ее протеканию. Отметим, что ускорение реакций при добавлении катализаторов называется положительным катализом. Существуют, однако, случаи, когда такое добавление приводит к замедлению реакции. Это явление называется отрицательным ка-та.иизом. [c.274]


    Влияние масштаба реактора на структуру его модели. Кинетическая модель реактора не зависит от масштаба, поскольку размеры реакционной системы не сказываются на скорости собственно химического превращения. Однако химическая реакция приводит к изменению состава реагирующей смеси и температуры. Следствием этого является возникновение процессов переноса вещества и тепла, на скорость которых существенно влияет характер концентрационного и температурного полей в реакторе. Указанные поля зависят от формы и размеров реакционной системы. В свою очередь состав и температура очень сильно влияют на скорость химического превращения. В результате этого протекание химического процесса в целом находится в сложной зависимости от размеров аппарата. [c.465]

    Обычно, хотя и не всегда, скорость химических реакций удваивается при увеличении температуры на 10 . Как можно объяснить это правило При 300° К увеличение температуры на 10° означает увеличение абсолютной температуры на 3% (10/300) и отсюда следует увеличение энергии молекулы на 3% (так как средняя энергия молекулы пропорциональна абсолютной температуре). Таким образом, при увеличении средней энергии молекулы на 3% вероятность разложения молекулы увеличивается на 100%. Отсюда можно заключить, что поскольку необходимым условием для химического превращения является наличие у молекулы определенного запаса энергии, то участвовать в реакции может не каждая молекула, а некоторая группа молекул. Этот вывод становится очевидным, если рассмотреть две типичные кривые равновесного распределения энергии для идентичных систем при двух [c.193]

    В процессе познания внутреннего устройства окружающих нас вещей ученые установили определенную градацию, иерархию уровней микромира. Мир, описываемый в нашей книге,— это мир молекул, взаимные превращения которых составляют предмет химии. Нас будет интересовать не вся химия, а только часть ее, посвященная изучению динамики изменения химической структуры молекул. Видимо нет надобности говорить о том, что молекулы построены из атомов, а последние—из ядра и окружающей его электронной оболочки что свойства молекул зависят от природы составляющих их атомов и последовательности соединения их друг с другом что химические и физические свойства веществ зависят от свойств молекул и характера их взаимосвязи. Будем считать, что все это в общих чертах известно читателю, и потому главный упор сделаем на вопросах, связанных с представлением о скорости химических реакций. [c.7]


    Некоторые реакции, например экзотермическое взаимодействие Нг и Ог с образованием Н2О, не идут, пока не будет подожжена реакционная смесь. Другие, менее экзотермические реакции, например эндотермическое растворение солей в воде, проходят быстро при комнатной температуре. Это указывает на то, что скорость реакции не обязательно зависит от количества выделившейся теплоты. Реакции со значительно смещенным состоянием равновесия в сторону продуктов реакции не всегда характеризуются большой скоростью. Скорость химической реакции зависит от пути, по которому осуществляется превращение исходных веществ в конечные продукты механизма реакции). Знание механизма реакции часто позволяет понять ее режим. Практически более важно именно то, что путем изучения скорости реакции можно получить много сведений о механизме реакции. [c.157]

    Учитывая инвариантность решения относительно сдвига вдоль координаты г, можно считать 01г=о = 0. Смысл необходимого условия и сделанного предположения состоит в том, что формирование и распространение волны со стационарным профилем возможно лишь тогда, когда температура на входе в слой катализатора настолько мала, что скоростью химической реакции при этой температуре можно пренебречь но сравнению со значениями скорости реакции в области наиболее активного превращения вещества. Так же как и в теории горения [91, это означает, что стационарное распространение фронта реакции описывает процесс приближенно, асимптотически. [c.31]

    Еще не так давно измерения скоростей химических реакций в силу недостаточного развития методов эксперимента и теоретических представлений могли служить лишь вспомогательным средством для воссоздания картины химических взаимодействий. Дальнейшее становление физической химии и смежных областей отчетливо показало, что исследования скоростей реакций и выявление общих закономерностей химических превращений во времени должны занимать одно из центральных мест. Обобщение законов скоростей химических реакций, повышение уровня кинетического эксперимента с повсеместным проникновением кинетических исследований вместе с возникновением новых представлений о природе и характере химических превращений способствовали формированию химической кинетики как науки (хотя и являющейся разделом физической химии). [c.8]

    Молекулы органических веществ в живых организмах подвергаются постоянным физическим и химическим превращениям. Скорость химических реакций в организме варьирует в широких пределах (рис. 5). Так, скорость многих ферментативных реакций составляет несколько миллисекунд (10 с), конформационные изменения спирали ДНК — микросекунды (10 с), а скорость реакций, обеспечивающих зрительное восприятие, — в пределах пикосекунд (10 с). Скорость превращения веществ регулируется биологическими катализаторами — ферментами, а также гормональной и нервной системами. [c.24]

    Выход целевого продукта—это отношение количества сырья, израсходованного на получение этого продукта, ко всему количеству сырья, претерпевшему химическое превращение. Выход целевого продукта определяет степень полезного использования сырья и зависит практически от тех же условий, что и интенсивность процесса, однако в случае сложных реакций эти условия отражаются на выходе иначе, чем на скорости реакции. Например, при повышении температуры наряду с ускорением целевой реакции может увеличиться удельный вес побочных реакций, т. е. снизится выход. То же можно сказать о влиянии увеличения концентрации и других факторов на ход реакции. [c.19]

    Известно, что скорость химической реакции увеличивается примерно в 2—3 раза при повышении температуры на 10° С. Если температура повысится на 100° С, то скорость реакций образования углеводородов увеличится в тысячи раз. При 100° С, например, реакция может идти медленно и при опытах могут образовываться небольшие количества углеводородов. Но надо учесть, что толщи горных пород находятся на глубинах, где такая или даже меньшая температура существует в течение миллионов лет. Поэтому при самой ничтожной скорости реакций за это время может накопиться значительное количество нефтяных углеводородов. Таким образом, даже при невысоких температурах (несколько десятков градусов) с небольшой скоростью идут химические превращения органического вещества осадочных пород с образованием углеводородов. [c.72]

    Скорости химических реакций и выходы продуктов превращений в значительной мере обусловлены природой среды, в которой протекает химический процесс. Известно, что кинетика химического превращения зависит от агрегатного состояния реакционной среды. Переход от газообразной к жидкой или твердой фазе не только изменяет скорость данной химической реакции, но может влиять и на направление химического процесса. Подобное действие оказывает полярность реакционной среды и изменяет более или менее специфическим образом течение реакции. [c.3]


    Показано, что с термодинамических позиций скорость химических реакций зависит в общем случае не от произведения концентраций, а от произведения активностей реагентов в реагирующей смеси в стехиометрических степенях. Тогда независимо от порядка реакции размерность всех констант скорости тождественна размерности скорости реакции. В качестве стандартного значения константы скорости прямой и обратной химических реакций целесообразно установить значение скорости односторонней реакции в стехиометрической равновесной смеси реагентов в газовой фазе в с под стандартным давлением. Оказывается, что это значение константы скорости одинаково для всех химических реакций, что существенно упрощает математическое моделирование совокупности химических превращений в многокомпонентных системах, т. е. в природных геохимических и геотехнологических условиях. [c.102]

    Эффективные константы скоростей химических реакций, эффективность инициирования, зависящие от степени превращения мономеров, представляются в виде [c.276]

    Параметры ХТС подразделяют на конструкционные и технологические. Конструкционными параметрами ХТС являются геометрические характеристики аппаратурного оформления элементов системы (объем химического реактора, основной размер сечения аппарата, диаметр и высота слоя насадки в массообменных аппаратах и т. д.). К технологическим параметрам ХТС относят коэффициенты степеней превращения и степеней разделения химических компонентов, коэффициенты тепло- и массо-передачи, константы скоростей химических реакций и т. д. [c.12]

    В первой (кинетической) стадии горения, включающей пред-пламенное окисление и появление очагов воспламенения, скорости химических реакций, которые значительно меньше скоростей диффузии реагирующих компонентов, определяют скорость процесса в целом. В этой стадии скорость и характер превращения ТВС определяются ее физико-химическими свойствами, т. е. в основном зависят от фракционного и углеводородного состава топлива, от наличия в нем присадок, активирующих горение. [c.148]

    Следовательно, оптимальная высота слоя для промышленного реактора с псевдоожиженным слоем катализатора при необходимой степени конверсии зависит в основном от отношения скоростей реакции межфазного обмена газом. Таким образом, если процесс лимитируется скоростью химической реакции, то для получения более высокой степени превращения нужно увеличить либо высоту слоя, либо каталитическую активность (температуру), если, конечно, процесс в этих изменившихся условиях все еще лимитируется скоростью реакции. С другой стороны, если процесс контролируется скоростью межфазного обмена газом, то увеличение скорости реакции может ничего не дать, и для повышения конверсии потребуется либо увеличить высоту [c.367]

    Химическая кинетика занимается изучением скорости химических реакций и механизма их протекания. Задача технической кинетики — выбор таких условий, при которых химическое превращение, проходящее с соответствующим выходом, достигало бы скорости, позволяющей реализовать это превращение в промышленных условиях. [c.204]

    Уравнения ( 111-168) — ( 111-175), полученные для случая когда на межфазной поверхности происходит реакция первого по рядка, указывают на то, что в кинетической области скорость пре вращения таким же образом зависит от некоторых параметров как скорость химической реакции на поверхности. Влияние темпе ратуры в данном случае можно выразить уравнением Аррениуса т. е. зависимость будет иметь экспоненциальный характер. Ско рость превращения в этой области не зависит от скорости движе ния потока через систему. [c.248]

    Важнейшая в химической кинетике величина — скорость химической реакции — определяется изменением во времени массы какого-либо из исходных веществ или продуктов реакции в результате химического превращения. [c.11]

    Сегрегация и ее воздействие на химические превращения и процессы переноса особенно проявляются в системах с повышенной вязкостью, а также там, где реакции протекают с высокими скоростями. Образование молекулярных агрегатов характерно для многих процессов получения высокомолекулярных соединений. Так, сложной совокупностью физико-химических явлений отличается гетерофазная полимеризация, при которой образующийся полимер выделяется из первоначально гомогенной системы в виде новой конденсированной фазы с соответствующими морфологическими особенностями и возможным протеканием элементарных реакций в нескольких фазах [12, 13]. Примером может служить полимеризация винилхлорида, которая протекает в три стадии вначале процесс идет в гомогенной мономерной фазе на второй (наиболее продолжительной) стадии полимеризация протекает в двух фазах — мономерной и полимер-мономерной, а на третьей стадии — вновь в одной фазе (полимер-мономерной). При этом процесс сопровождается потоками массы и тепла в глобулярных образованиях (полимерных частицах), размеры которых увеличиваются в ходе реакции за счет поступления реагентов из сплошной мономерной фазы. [c.26]

    Цитируемая работа однако, еще раз демонстрирует недостатки рассматриваемого метода если средние диаметры пузырей не могут быть рассчитаны заранее или непосредственно измерены, то константы скорости химических реакций не могут быть определены с приемлемой точностью по данным о превращении в псевдоожиженном слое. [c.403]

    Основными количественными характеристиками ФХС данного уровня иерархии являются нормальные и касательные напряжения, значения деформаций и скоростей деформаций, коэффициенты вязкости, диффузии, теплопроводности, скорости химических реакций и фазовых превращений и т. п. [c.31]

    На практике процессы теплообмена часто имеют сложный характер, и выделить стадию, определяющую скорость теплообмена в целом, невозможно, особенно, если эти процессы осложнены химическим превращением (скорость процесса может лимитироваться выделением теп.иа реакции), излучением и т. д. [c.466]

    Расчет конверсии с учетом РВП. Знание Е- или С-кривой для конкретного технологического аппарата и кинетики линейного процесса (например, скорости химической реакции первого порядка) однозначно решает вопрос о глубине превращения в данном аппарате. [c.213]

    Разность температуры в элементах печной системы и внутри каждого из них является в печах главной движущей силой, приводящей их к различным превращениям и процессам. Температура оказывает сильное влияние на скорость химических реакций, степень превращения, селективность и т. д., однако это влияние неодинаково для различных видов термотехнологических процессов и типов реакций. [c.115]

    Реакция обмена В г, как было показано, имеет первый порядок по Вг и нулевой порядок по СгН4. Однако эти данные недостаточно надежны . Сравнительное изучение [39, 40] реакций мзо-бутена, 1-бутена и цис-бу1виа-2 в присутствии никеля показало, что в системе происходит очень сложный ряд химических превращений, в том числе индуцированная изомеризация 1-бутена в 2-бутен, реакция дейтерообмена, индуцированная цис-транс-изомеризация бутена-2 и, наконец, реакция присоединения по двойной связи. При давлении ниже 200 мм рт. ст. скорости реакций обмена, присоединения и изомеризации для 1-бутена приблизительно равны и имеют порядок /2 по олефину и Нг. С увеличением давления Нг обе эти реакции приближаются к нулевому порядку по олефину и сохраняют порядок 1/2 по Нг- При большом избытке 1-бутена все реакции становятся ингибированными (при температурах от 30 до 150°). Предложенный авторами на основе эксперименталь-дых данных механизм несколько сомнителен ввиду отсутствия данных по изотермам, [c.549]

    СКОРОСТЬ ПРЕВРАЩЕНИЯ И СКОРОСТЬ ХИМИЧЕСКОЙ РЕАКЦИИ [c.29]

    Последнее соотношение явилось причиной того, что в современной физико-химической литературе скорость химических реакций и скорость превращений выражают через йс16,1. При расчетах реакторов, однако, это может вызвать путаницу, особенно для непрерывного процесса в установившемся режиме, где концентрации не зависят от времени пребывания в реакторе. Выражение d /iii в уравнении (П,3) — по сути дела не скорость реакции и пе скорость превращения это скорость изменения концентрации в реакторе периодического действия вследствие химической реакции. [c.41]

    Упомянутый выше случай автокаталитической реакции, хотя и редко встречается на практике, завершит наше качественное описание изменений скорости химической реакции. Биохимическая реакция превращения трипсиногепа в трипсин катализируется своим продуктом — трипсином. Она хорошо описывается моделью [c.72]

    В предлагаемой книге авторы предприняли попытку изложить полученные к настоящему времени на основании ряда упрощающих предположений результаты теоретического исследования массотеплообмена движущихся реагирующих частиц со средой. Предполагается, что изменением плотности при химических превращениях (выражающимся, в частности, в появлении потоков Стефана) можно пренебречь. Баро- и термодиффузия, а также перенос тепла излучением считаются пренебрежимо малыми. Предполагается также, что плотность и вязкость среды не зависят от концентрации и температуры и, следовательно, раснределения концентрации и температуры не оказывают влияния на обтекание частицы. Это приводит к возможности независимого анализа гидродинамической задачи о вязком обтекании и диффузионно-тепловой задачи о полях концентрации и температуры. Необходимая для решения диффузионно-тепловой задачи информация о поле скоростей считается известной. Коэффициенты диффузии и температуропроводности считаются не зависящими от концентрации и температуры. В некоторых разделах книги наряду с поверхностными превращениями рассматриваются также реакции, протекающие в объеме. [c.10]

    Мелуин-Хьюз [27] в соответствии с теорией активации химических превращений делит химические реакции на три группы 1) реакции между ионами, дающие одну ионную пару или ковалентную молекулу реакция мгновенна и = 0 2) реакции между ковалентными молекулами и ионами, константа скорости реакции В равна частоте соударений 2 молекул реагирующих компонентов и 3) реакции между двумя ковалентными молекулами энергия активации Е очень большая, в то время как константа скорости реакции В гораздо меньше частоты соударений Е. Отсюда вытекает, что определенное количество энергии должно быть сосредоточено на валентной связи, чтобы мог произойти разрыв мовалентной связи энергия активации Е в значительной степени определяет скорость реакции К. Реакции между двумя молекулами, в каждой из которых должны быть активированы ковалентные связи, обычно во много сотен раз медленнее реакций между коваленти.1ми связями и ионами, у которых константа В приблизительно равна частоте соударений молекул реагентов и не зависит от их строения. [c.564]

    Если величины, обратные константам скорости, принять в качестве сопротивлений превращению на соответствующих этапах, то уравнение (VIII-172) показывает, что сопротивление превращению равно сумме кинетического l/k и диффузионного II(Diz) сопротивлений. Когда значение константы скорости химической реакции k значительно превыщает значение коэффициента массоотдачи Diz k D z), зависимость (VIII-172) упрощается  [c.248]

    Оствальд пытался доказать, что гомогенные неустойчивые системы не могут существовать иначе, как в состоянии превращения . Для ЭТ0Г.0 он использовал законы энергетики , являющиеся, по его мнению, самым надежным основанием общих заключений . Эти законы,— говорил он,— не определяют численную величину скорости, которая должна при этом осуществляться они требуют только, чтобы эта скорость не была строго равна нулю, а имела конечную величину [9]. Но, во-первых, Оствальд не учитывает, что здесь может быть надежная защита для сохранения неустойчивости системы (например, высокая энергия активации) в течение неограниченно долгого времени. Во-вторых, выражаясь его же словами, мера времени или скорость химических реакций не устанавливается законами энергии [3, стр. 220]. И, наконец, в-третьих, с положением о естественной скорости трудно согласовать положение о Д1а-лой вероятности протекания реакций между абсолютно чистыми веществами, выдвинутое тоже самим Оствальдом. Самое главное в критике оствальдовского допущения естественных скоростей заключается в практической невозможности их учета в тех случаях, когда реакция не происходит без катализаторов. Поэтому, не отрицая возможности медленного протекания некоторых реакций, ускоряемых катализаторами, в целом это допущение не выдерживает критики. [c.83]

    Таким образом, в этом случае сопротивление диффузии определяет скорость превращения, и процесс проходит в диффузионной области. Когда же коэффициент массоотдачи О/г велик по сравнению с константой скорости химической реакции к D z к), уравнение (VIII-172) приобретает вид  [c.248]

    Так же как и скорость любьгх химических превращений, скорость ферментативных реакций зависит от многих факторов. Основными из них являются следующие время протекания ферментативной реакции время инкубации), температура и pH окружающей среды, присутствие особых веществ — модификаторов фермента ингибиторов и активаторов). Рас- [c.110]

    Обозначения Г, Г х, То - температуры слоя, на входе в слой и начальная с, Свх> Со соответствующие значения концентрации реагента в газовой смеси в слое, на входе и начальное и - линейная скорость потока газовой смеси, отнесенная к полному сечению слоя W T, с) - скорость химической реакции ДГад - адиабатический разогрев смеси при полной степени превращения I, L -текущая и общая длина слоя катализатора X - эффективный коэффициент продольной теплопроводности слоя - средняя обммная теплоемкость слоя катализатора Ср - средняя объемная теплоемкость реакционной смеси е -пористость слоя катализатора у = Ср + Сел D - эф ктивный коэффициент диффузии реагента в газовой смеси. [c.309]

    Так как на твердом катализаторе превращение претерпевают адсорбированные на поверхности молекулы, возможны три пути гетерогенно-каталитической реакции 1) мономолекулярное превращение, обусловленное взаимодействием адсорбированных молекул с кристаллической решеткой катализатора 2) взаимодействие адсорбированных молекул, ползающих по активной поверхности 3) взаимодействие адсорбированных молекул с молекулами, налетаюш ими на поверхность катализатора из объема. Очевидно, в любом из названных случаев скорость химической реакции зависит от концентрации реагентов (всех или, если происходит налетание , — некоторых) на активной поверхности. [c.80]


Смотреть страницы где упоминается термин Химические превращения Скорость химической реакции: [c.23]    [c.74]    [c.106]    [c.4]    [c.285]    [c.8]    [c.229]    [c.64]    [c.76]    [c.274]    [c.354]   
Смотреть главы в:

Физическая химия и химия кремния Издание 3 -> Химические превращения Скорость химической реакции




ПОИСК





Смотрите так же термины и статьи:

Превращения химические

Скорость превращения

Скорость превращения и скорость реакции

Скорость химических превращений

Химические реакции скорость

Химические скорость



© 2025 chem21.info Реклама на сайте