Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теоретическая оптимизация процесса

    Теоретическая оптимизация процесса [c.212]

    ТЕОРЕТИЧЕСКАЯ ОПТИМИЗАЦИЯ ПРОЦЕССА [c.92]

    Теоретическую оптимизацию процесса осуществляют на основе его кинетической модели. Для окислительной регенерации катализатора кинетическая модель процесса задается уравнениями (4.6). Существенная особенность регенерации-зависимость скорости выжига кокса и изменения состава газовой фазы от относительной удельной поверхности коксовых отложений-5 = (4с/9 ) = Методически оптимизация процесса окислительной регенерации идентична решению подобной задачи для нестационарных процессов с изменяющейся активностью катализатора Поэтому в исследованиях были использованы методические подходы, разработанные авторами работы [171] при решении задач теоретической оптимизации конкретных промышленных каталитических процессов, характеризующихся падением во времени активности катализаторов. [c.93]


    Математическое описание, используемое для теоретической оптимизации процесса регенерации, представляет собой систему квазилинейных дифференциальных уравнений гиперболического типа  [c.93]

    Из анализа уравнений (2.80) и на основании проведенной выше теоретической оптимизации процесса можно заключить, [c.61]

    Путем изучения кинетических закономерностей составляют математические модели отдельных стадий и в целом процессов производства и облагораживания нефтяного углерода, которые затем можно использовать для расчетно-теоретической оптимизации параметров при проектировании и управлении процессами. Различают статистические модели, составляемые на основе обобщения опыта работы промышленных установок или с помощью метода активного эксперимента, и математические модели, которые основаны на кинетических закономерностях процесса. Алгоритмы управления процессами производства и облагораживания нефтяного углерода базируются на их математической модели и включают дополнительно ряд эмпирических зависимостей, полученных статистической обработкой показателей работы промышленных установок. [c.263]

    Теоретическая оптимизация процесса показала, что для получения максимального выхода бутадиена необходимо поддерживать максимально допустимую температуру. Оптимальный температурный режим — изотермический, что легче реализовать в реакторе с кипящим слоем. [c.170]

    В ряде случаев, когда на результаты процесса влияет большое число входных переменных, но характер влияния каждой из них неизвестен и не может быть точно установлен на основе теоретических соображений, исследование и оптимизацию процесса можно начать, применяя методы математической статистики. [c.41]

    Несвязность и связность процессов. При теоретической оптимизации находят оптимальные температурный режим, давление и состав реакционной смеси. Для простых процессов (с одной химической реакцией) определение оптимальных условий упрощается. Эти процессы являются несвязными, т. е. для них оптимальный режим в каждый момент времени не зависит от протекания. реакции в другие моменты. Иначе говоря, локальная скорость химического процесса должна быть максимальной в каждый момент времени (в каждом сечении аппарата). [c.491]

    Опыт решения задач по выбору оптимальных условий показывает, что оптимизацию каталитических процессов целесообразно осуществлять в два этапа [46, 144], проводя последовательно теоретическую и технологическую оптимизацию. На первом этапе - теоретической оптимизации-определяют наилучший (в смысле некоторого выбранного критерия) режим работы независимо от возможности его практической реализации. После этого выбирают конструкцию и условия работы ре- [c.92]


    Следующим этапом математического моделирования является определение оптимальных условий проведения процесса. При теоретической оптимизации находят оптимальные параметры — температуру, давление и состав реакционной смеси, не принимая во внимание возможность их реализации. Например, для обратимой эндотермической реакции дегидрирования находят профиль оптимальных давлений по длине реактора, при котором скорость реакции в каждой точке реактора максимальна  [c.116]

    Начиная с первичных публикаций (31], в которых рассматриваются вопросы компаундирования авиабензинов с применением метода линейного программирования, оптимизации процесса смешения нефтепродуктов посвящено значительное число работ теоретического и прикладного характера. Большое внимание, уделяемое моделированию и оптимизации процессов смешения, объясняется тем, что операция смешения является завершающей в производстве товарной продукции, а для математического описания - самой сложной. [c.16]

    Теоретическая оптимизация. Постановка задачи теоретической оптимизации заключается в следующем. Необходимо определить, как следует изменять условия процесса (температуру, исходный состав реакционной смеси, давление) по мере протекания реакции (с ростом степени превращения), чтобы достигнуть заданной степени превращения за минимально возможное время контакта, т. е. обеспечить максимальную интенсивность процесса. При этом могут быть установлены следующие ограничения максимально возможная температура минимальная селективность и т. д. [c.181]

    Окончательной проверкой принципиальной работоспособности процесса является построение наряду с равновесной также и рабочей линии процесса. Расчет этих кривых, а также определение числа теоретических тарелок являются последним этаном перед расчетом аппаратов и последующ ей оптимизацией процесса в целом. [c.52]

    Такой подход к решению проблем разделения суспензий принят в настоящей книге, где приводятся некоторые новые теоретические сведения, а также отражены новые методы обследования свойств суспензий, работы на модельном оборудовании, выбора и применения фильтрующих материалов, расчета и оптимизации процессов разделения суспензий, полученные в результате практической работы в лаборатории фильтрования научно-исследовательского института органических полупродуктов и красителей (НИОПиК). В книге приводятся описание современных конструкций фильтров и центрифуг, а также общие принципы и последовательность операций при их выборе.  [c.5]

    Теоретическая оптимизация. Получив описание химического процесса (главным образом его кинетическую модель), проводят теоретическую оптимизацию. Скорость превращения зависит от концентраций реагентов и температуры. В ходе превращения состав реакционной смеси меняется, и возникает вопрос как надо менять температуру по мере протекания реакции, чтобы получить заданное превращение с максимальной интенсивностью Критерием оптимизации является т, управляющим параметром - Т. [c.150]

    В книге описаны вредные примеси нефти, вызывающие коррозию нефтезаводского оборудования и загрязняющие получаемые нефтепродукты. Дана характеристика водонефтяных эмульсий. Изложены теоретические основы образования и стабильности эмульсий и рациональные методы их разрушения. Приведены технологические схемы обезвоживания и обессоливания нефти на современных ЭЛОУ, методы расчета параметров с целью оптимизации процесса. Даны характеристика и анализ эффективности применяемых деэмульгаторов. [c.288]

    Основным исходным материалом для оптимизации процесса являются результаты машинных расчетов, в ходе которых были определены технологические характеристики ректификационной колонны зависимости флегмового потока и тепловых нагрузок, на куб и дефлегматор от числа теоретических тарелок для требуемых условий разделения. В запоминающее устройство машины вводят указанную зависимость V=f(N), физико-химические константы разделяемой смеси (ух, Уу, Я и др.), параметры греющего пара и хладоагента, а также основные экономические показатели (стоимость колонны, теплообменников и теплоносителей, коэффициенты, учитывающие нестандартность оборудования) и т. д. [c.134]

    В инженерной химии гетерогенного катализа, как и во многих пограничных науках вообще, есть области теоретически более разработанные, такие как формальная кинетика, принципы оптимизации процессов, и области, еще находящиеся на эмпирической стадии развития, как методы приготовления катализаторов. Мы сочли необходимым осветить в этой книге и те и другие, поскольку иначе невозможно сознательно подойти к разработке промышленного химического процесса. [c.6]


    Известно множество процессов, теоретическое обоснование которых было сделано только через несколько десятилетий после того, как они нашли широкое и успешное практическое применение. Накопленных простых эмпирических зависимостей оказывается достаточно для устойчивого получения желаемых результатов. Во многих же случаях отсутствие теории сдерживает практическое применение полученных результатов. К такого рода проблемам относится и проблема изменения свойств водных систем после кратковременного воздействия на них относительно слабых электромагнитных полей. Мы многократно отмечали, что часто в лабораторных условиях достигаемые эффекты отличаются неустойчивостью, остаются неизвестными приемы стабилизации и оптимизации процесса, методы расчета аппаратов для магнитной обработки водных систем. [c.89]

    Основными этапами при разработке реактора и САУ является построение математического описания процессов в реакторе, теоретическая оптимизация, качественный анализ описания, выбор типа реактора и исследование его статических и динамических свойств, определенне основных технологических и конструктивных характеристик реактора, выбор каналов управления, поиск оптимального управления и, наконец, синтез САУ. Значения многих технологических параметров и конструктивных характеристик реактора, как, например, диаметр трубки, размер зерен катализатора, в значительной мере определяющих стоимость, надежность и гидравлическое сопротивление реактора, должны выбираться с учетом реально возможного качества работы САУ. Таким образом, уровень и стоимость системы САУ могут влиять на аппаратурно-технологические решения процесса, а для реакторов, обладающих пониженной стабильностью, целиком определить эти решения. Так, неустойчивость оптимального стационарного режима приводит к частым срывам на высокотемпературный или низкотемпературный режим. Система управления реактором возвращает этот режим в окрестность неустойчивого ста-циоиарного состояния, процесс в целом оказывается нестационарным, рыскающим в окрестности этого состояния. [c.21]

    Основное направление научных исследований — химия экстремальных состояний. Создал (1959) теоретические основы плазмохимии. Разработал (1965) методы расчета параметров принудительной закалки продуктов реакции в плазменной струе и способы управления химическими процессами в низкотемпературной плазме. Предложил способы оптимизации процессов получения в плазменной струе ацетилена из метана, олефинов из низкооктановых бензинов, формальдегида из метана, окислов азота из азот-кислородных смесей. Создал (1969) методы математического моделирования явлений физической и химической кинетики. Развил (1967—1970) основные положения неравновесной химической кинетики, механизмов неравновесных реакций и исследовал их применение. Разработал (1976—1979) теорию и экспериментально исследовал закономерности химических реакций в турбулентных потоках газа и плазмы. [c.399]

    С началом Второй мировой войны и развёртыванием национальных проектов по созданию атомного оружия разделение изотопов урана приобрело громадное значение. Экспериментальные работы по разработке различных типов газовых центрифуг для этой цели были продолжены в Германии и начаты в США в рамках Манхэттенского проекта. В это время другой нобелевский лауреат П. Дирак выполнил фундаментальные теоретические исследования процесса разделения изотопов в газовой центрифуге. К. Коэн с сотрудниками обобщили теорию Онзагера, разработанную для расчёта эффективности разделения в термодиффузионной колонне, на случай газовой центрифуги. Эти теоретические разработки позволили построить общую математическую теорию и определить пути оптимизации разделения изотопов на газовых центрифугах [3]. [c.169]

    Оптимизация процесса регенерации, как отмечается в работе [Д. 1.4], должна проводиться в два этапа этап теоретической оптимизации (без учета возможности практической реализации оптимального режима) и этап технологической оптимизации, при которой выбирают конструкцию и условия работы реакционного аппарата, позволяющие наилучшим способом приблизиться к надежному теоретически оптимальному режиму. [c.255]

    Подводя итог обсуждаемым здесь некоторым теоретическим аспектам метода электрохимической деструкции, отметим, что процесс окисления органических загрязнений зависит от очень многих факторов, таких, как материал электродов, параметры электролиза, химическое строение веществ, возможность их адсорбции на электродах, присутствие посторонних примесей. Эти зависимости необходимо выявлять экспериментально и учитывать при технологической оптимизации процесса очистки сточных вод от индивидуальных компонентов. [c.89]

    Решение задач оптимального проектирования и оптимизации процессов разделения многокомпонентных смесей методом ректификации невозможно без использования результатов математического моделирования. Как уже отмечалось, использование концепции теоретической ступени разделения ле дает возможности надежно предсказывать конструктивные параметры установки, удовлетворяющей заданным технологическим требованиям. Поэтому необходима детальная проработка таких проблем, как массопередача в многокомпонентных смесях и гидродинамика потоков на контактных устройствах массообменной аппаратуры [130, 179, 185]. [c.39]

    Кинетическая модель дегидрирования изопентана позволяет осуществить теоретическую оптимизацию процесса используя оптимальный температурный профиль максимизировать общее количество продукта реакции (изоамиленов) и минимизировать содержание кокса оптимизация сводилась к поиску на ЭВМ максимума параметра /  [c.124]

    На основе кинетической модели процесса выполнен расчет реактора синтеза анизола. Основная цель такого расчета — определение оптимального режима ведения процесса в качестве целевой функции выбран максимальный выход анизола. Расчеты по оптимизации процесса алкилирования осуш,ествля-лись в два этапа. Проведенная на первом этапе теоретическая оптимизация процесса показала, что максимальный выход может быть получен в изотермическом реакторе с температурой порядка 310°С. Максимально приблизиться к теоретически оптимальному температурному режиму можно в трубчатом реакторе с достаточно эффективным отводом тепла через стенки трубок. Поиск оптимального режима работы реактора, обеспечивающего максимальный выход анизола с единицы объема катализатора, производился при варьировании следующих параметров количества подаваемого на алкилирование сырья, концентрации метанола в потоке сырья, диаметра и числа трубок. Длина реакционных трубок принята равной 2 м, коэффициент теплопередачи через стенку трубки 105 Вт/(м -К). [c.213]

    Оптимальный режим процесса целесообразно определять в два этапа. На первом этапе, называемом теоретической оптимизацией, находят самые лучшие в некотором- смысле условия, не принимая во внимание возможность их реализации. Этот теоретический оптимальный режим зачастую отыскивают из условия максимальной интенсивности процесса при заданном выходе целевого продукта. Задачи определения минимального времени контактирования при известной степени превращения (максима[Льная интенсивность процесса) и поиска ее максимума при данном времени контактирования для простых процессов эквивалентны. На втором этапе выбирают реакторы (подробно см. стр. 499 сл.), позволяющие наилучшим образом приблизиться к указанному. Следовательно, появляется объективный критерий выбора технологической схемы и конструкции реактора. [c.491]

    Изложены теоретические основы образования и стабильности эмульсий и рациональные методы их разрушения. Приведены технологические схемы обезвоживания и обессоливания нефти на современных электрообезвоживающих установках, методы расчета параметров для оптимизации процесса. Даны характеристика и анализ эффективност применяемых деэмульгаторов. [c.2]

    Результаты разработаны теоретические основы проектирования клеевых соединений в меховой одежде на базе использования новых перспективных прокладочных материалов с низкотемпературным клеевым покрытием изучены сущность и закономерности образования клеевых соединений закономерности изменения свойств полимера и формирования структуры прокладок в зависимости от вида меха проведена оптимизация процессов получения новых клеевых прокладочных материалов (КПМ) разработаны рекомендации по оптимизации процессов термодублирования и изготовления меховой одежды. [c.123]

    Из опубликованных в этой области работ следует отметить работу Л.М. Нафталла [62], который, опираясь на наши ранние исследования, развил теоретическую основу составления тепловых и материальных балансов. Он исследовал рециркуляционный цикл синтеза винилхлорида только с точки зрения нахождения параметров установившегося состояния, но не рассматривал вопросы задачи с точки зрения оптимизации процесса. Для решения нелинейной задачи он предлагает пользоваться методом Ньютона — Рафсона. [c.90]

    Оптимизация процесса При теоретической оптимизации, максимальный выход циклопентена В ои(, оптимальная степень превращения к избирателв-ность (1 рду при этих условиях определяются,соответственно,урэв-неннями (25), (26), (27) [c.206]

    Новый метод анализа аминокислот быстро развивался. Появилась возможность с его помощью приступить к решению ряда сложных, казавшихся неразрешимыми проблем, и прежде всего проблёмы определения первичной структуры белков. Вскоре стало очевидным, что анализ аминокислот в его первоначальном варианте слишком трудоемок и недостаточно эффективен. Ввиду этого был поставлен ряд исследований по механизации трудоемких операций и совершенствованию организации эксперимента. Основной вклад в решение этих задач вновь внесла группа исследователей под руководством Мура и Стайна [4]. Благодаря проведению реакции аминокислот с нингидрином в проточном капиллярном реакторе и измерению интенсивности окраски на регистрирующем проточном фотометре трудоемкая обработка фракции была преобразована в непрерывный процесс. Таким образом, на основе аналитического метода был создан новый прибор — аминокислотный анализатор. Выпуск и дальнейшее усовершенствование этого прибора были предприняты промышленными фирмами. Последующие усилия были направлены на повышение эффективности и чувствительности анализа. Первое время причиной низкой эффективности прибора служила длительность элюирования. Основой для дальнейшей оптимизации процесса послужила теоретическая работа Гамильтона [5], в которой было показано, что повышения эффективности можно достигнуть путем увеличения скорости подачи элюента и уменьшения размеров зерен ионита. В результате многочисленных модификаций ионитов (а эта работа все еще продолжается) удалось более чем в 10 раз сократить время элюирования без снижения разрешения. Сокращение продолжительности анализа [c.306]

    С целью выбора оптимальных конструктивных решений реактора произведем теоретическую оптимизацию осуществляемого в нем процесса. Для этого составим математическую модель процесса растворения в слое железных стружек, исходя из общего уравнения энергомассопереноса, которое записывается в следующем виде [89]  [c.59]


Смотреть страницы где упоминается термин Теоретическая оптимизация процесса: [c.208]    [c.209]    [c.116]    [c.63]    [c.208]    [c.449]    [c.81]    [c.199]    [c.100]    [c.10]    [c.62]   
Смотреть главы в:

Регенерация катализаторов в нефтепереработке и нефтехимии -> Теоретическая оптимизация процесса




ПОИСК





Смотрите так же термины и статьи:

Оптимизация процессов

Оптимизация процессов оптимизация



© 2025 chem21.info Реклама на сайте