Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химическая термодинамика. Первое и второе начала термодинамики

    ГЛАВА II ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА. ПЕРВОЕ И ВТОРОЕ НАЧАЛА ТЕРМОДИНАМИКИ [c.84]

    Обозначим изменение электрической энергии через q>dq (где q> — электрический потенциал, q — заряд поверхности), тогда s соответствии с обобщенным уравнением первого и второго начал термодинамики (без учета химической энергии) изменение энергии Гиббса поверхности можно записать следующим образом  [c.47]


    Современная термодинамика построена по строго дедуктивному принципу из двух наиболее общих и всеобъемлющих положений (первое и второе начало термодинамики), являющихся итогом обобщения накопленных человечеством опытных данных, выводятся следствия для различных частных случаев. При этом конкретизация рассматриваемых условий проводится ступенями. Например, из первого начала термодинамики сначала выводятся следствия, справедливые для любых процессов, протекающих при постоянном давлении (или объеме), затем накладывается второе ограничение — постоянство температуры далее круг рассматриваемых процессов ограничивается только химическими реакциями (или фазовыми переходами) и т. п. [c.12]

    В сборнике содержится около 900 задач, которые отражают основные разделы химической термодинамики первое и второе начала, где рассматриваются два метода приближенного вычисления тепловых эффектов, расчеты термодинамических функций и химического равновесия, закономерности фазового равновесия в одно и двухкомпонентных системах, термодинамика растворов. Каждому разделу предпослано краткое теоретическое введение, которое содержит математическое обоснование изучаемого вопроса, приведены примеры решений типичных задач. Все величины выражены в системе СИ. [c.208]

    Выше было уже сказано, что разработанная И. Р. Пригожиным термодинамика необратимых процессов устраняет запреты на эволюцию химических систем в направлении их упорядочения, налагаемые термодинамикой Р. Клаузиуса и Л. Больцмана. Ввиду того, что при обсуждении проблем химической эволюции и биогенеза в литературе чаще всего обращаются к одной из первых работ И. Пригожина, а именно к работе [11], в которой дана новая интерпретация второго начала термодинамики, более поздние работы того же автора рассматриваются всего лишь как экстенсивное развитие работы [II]. Между тем [c.211]

    Уравнение для расчета температурной зависимости давления пара вывел Клапейрон [2661. В этом уравнении, которое явилось Первым применением второго начала термодинамики к решению физико-химической задачи, не все величины были выражены в явном виде. Лишь спустя 16 лет Клаузиус [267, 268] и одновременно с ним и независимо от него Томсон показали, что уравнение Клапейрона имеет форму [c.35]

    Началу образования новой фазы — возникновению центров конденсации — соответствует определенная критическая степень пересыщения, зависящая как от природы веществ, так и от наличия ядер конденсации. При гомогенной конденсации происходит самопроизвольное образование зародышей энергия 1И)верхности выступает в качестве потенциального барьера конденсации. Энергию Гиббса образования зародышей выражают (в соответствии с объединенным урав гением первого и второго начал термодинамики) в виде четырех составляющих энтропийной, механической, поверхностной и химической. Вклад энтропийной составляющей при отсутствии стабилизаторов, как прави.ю, небольшой. Механическая составляющая, отражающая энергию упругой деформации, характерна для [c.119]


    НЕДОСТАТОЧНОСТЬ ПЕРВОГО И ВТОРОГО НАЧАЛ ТЕРМОДИНАМИКИ ДЛЯ РАСЧЕТОВ ХИМИЧЕСКОГО СРОДСТВА [c.128]

    Постоянная интегрирования не может быть определена с помощью первого и второго начал термодинамики, дающих только дифференциальное соотношение для химического сродства, а изучение реакции в гальваническом элементе возможно лишь для немногих процессов. [c.434]

    Законы разбавленных растворов не могут быть получены чисто термодинамически, т. е. строго выведены на основании только первого и второго начал термодинамики и их следствий. Для теоретически обоснованного вывода законов необходимо молекулярно-статистическое рассмотрение, которое приводит к определению вида зависимости химического потенциала компонента раствора от состава. [c.21]

    XX в., о несовместимости законов физики и биологии и особой сущности явлений живой природы. Естествознание конца XIX в. и первых десятилетий XX в. еще не было готово к поиску причины противоположной направленности развития живого и неживого. Для многих исследователей, придерживающихся виталистических взглядов, а таких на рубеже двух столетий было подавляющее большинство, эта проблема вообще не считалась актуальной. Дело в том, что в то время были неизвестны физические и химические явления, противоречащие существовавшему тогда пониманию второго начала термодинамики. Более того, была постоянно наблюдаема его справедливость (течение 438 [c.438]

    Одно из них заключалось в том, что вынужденные при изучении реальных систем отступления от условий и модели равновесной термодинамики никогда не вступали в противоречия с тремя ее основными законами и объединившим первые два фундаментальным соотношением Гиббса. Составив основу равновесной термодинамики, первое, второе и третье начала оказались несравненно более общими и более фундаментальными, чем свое собственное произведение. Поэтому нельзя отождествлять и ставить знак равенства между этими всеобщими, универсальными законами природы и широко используемой, но тем не менее частной теорией (равновесной термодинамикой). Второе обстоятельство связано с нашим сегодняшним высоким уровнем знания тонких деталей внутреннего строения молекул и межмолекулярных взаимодействий. Во многих случаях этих знаний оказывается достаточно для интерпретации результатов термодинамического изучения и расширения возможностей последнего за счет привлечения физических и физико-химических теорий и разного рода эвристических соображений. Наконец, расширению спектра рассматриваемых с помощью равновесной термодинамики задач способствовало еще одно немаловажное обстоятельство — отсутствие альтернатив. Вплоть до начала 1980-х годов в естествознании фактически отсутствовал другой [c.441]

    Третий закон термодинамики не имеет такого общего характера, как первый закон термодинамики (на его основе получены две термодинамические функции V и Н) и второй закон термодинамики, который вводит в термодинамику новую функцию-энтропию 5. Третий закон термодинамики определяет только нижнее граничное значение энтропии для начала отсчета температуры. Отклонение энтропии от нулевого значения при температурах, близких к абсолютному нулю, связано с частичной аморфизацией твердого тела (дефекты в решетке) или с тем, что вещество содержит примеси (появление энтропии смешения). Однако эти отклонения не исключают возможности расчета изменения энтропий при химических реакциях, так как ошибка в расчете будет составлять значение Р п 2. [c.216]

    Физические и химические явления исследуются в термодинамике главным образом с помощью двух основных законов, называемых первым и вторым началами термодинамики. Первое начало следует из закона сохранения энергии и материи. Второе начало характеризует направление процессов. В XX в. был открыт третий закон термодинамики, который не имеет такого широкого применения, как первый и второй, но важен для теоретического анализа химических процессов. Известно еще нулевое начало (закон) термодинамики. Все законы термодинамики являются постулатами и проверены многовековым опытом человечества. [c.12]

    Второе начало (закон) термодинамики является одним из важнейших законов природы. Он охватывает широкий круг явлений природы, поэтому его смысл выражают в различных формулировках. Закон сохранения энергии (первое начало термодинамики) не содержит указаний о направлении процессов в изолированной системе. Второе начало (закон) термодинамики позволяет предвидеть направление химических процессов в изолированной системе. [c.41]

    Физические и химические явления в термодинамике исследуются главным образом с помощью двух основных законов, называемых первым и вторым началами термодинамики. Первое начало следует из закона сохранения энергии и вещества. Второе начало, характеризующее направление процессов, было сформулировано в XIX в. К нынешнему столетию относится открытие третьего закона термодинамики, который не столь широк и всеобъемлющ, как первый и второй, но имеет важное значение для теоретического анализа химических процессов. [c.11]


    Тепловые балансы составляют на основе первого начала термодинамики. Анализ фазового и химического равновесий осуществляют на основе второго и третьего начал в термодинамике. [c.12]

    Первое начало термодинамики исключает для изолированной системы все те процессы, в которых внутренняя энергия систем изменяется второе начало делает отбор более жестким—возможны лишь процессы, в которых энтропия изолированной системы (всей, в целом ), возрастает. Максимум энтропии и есть в этом случае условие равновесия. Каким путем система пришла к нему, термодинамика не исследует, хотя для хода химической эволюции путь имеет первостепенное значение. [c.297]

    Эти две группы вопросов являются предметом химической термодинамики. В основе решений задач, подобных указанным, лежат два фундаментальных закона природы — первое и второе начала термодинамики. [c.7]

    Ограниченность первого начала термодинамики заключается в том, что оно не определяет направления обмена тепловой энергией между телами. Первое начало не запрещает переход тепла от менее нагретого тела к более нагретому. Суть второго начала состоит в том, что оно определяет направление самопроизвольного протекания процессов, в том числе и химических реакций. [c.17]

    Термодинамика имеет дело со свойствами систем, находящихся в равновесии. Она не описывает протекания процессов во времени. Термодинамика дает точные соотношения между измеримыми свойствами системы и отвечает на вопрос, насколько глубоко пройдет данная реакция, прежде чем будет достигнуто равновесие. Она также позволяет уверенно предсказывать влияние температуры, давления и концентрации на химическое равновесие. Термодинамика не зависит от каких-либо допущений относительно структуры молекул или механизма процессов, приводящих к равновесию. Она рассматривает только начальные и конечные состояния. Но и при таком ограничении термодинамический метод является одним из самых мощных методов физической химии, и поэтому, учитывая важную роль термодинамики, первая часть книги посвящена ей. К счастью, термодинамика может быть полностью разработана без сложного математического аппарата, и ее почти целиком можно изложить на том же уровне, на каком написана вся книга. Мы рассмотрим применение термодинамики к химии, начав с нулевого, первого, второго и третьего законов термодинамики, которые в дальнейшем будут применяться к химическим равновесиям, электродвижущим силам, фазовым равновесиям и поверхностным явлениям. [c.11]

    Мы не будем касаться истоков общей термодинамики, возникшей при решении теплотехнических проблем в первой половине XIX в. [4, с. 167], и только напомним, что формулировка первого начала термодинамики и его экспериментальное подтверждение относятся к 40-м годам XIX в. (Майер, Джоуль), а формулировка второго начала термодинамики и его математическое выражение — к 50-м годам (Клаузиус, В. Томсон). Важнейшее понятие химической термодинамики — понятие энтропии — было введено Клаузиусом в 1865 г. [c.120]

    Термодинамический метод синтеза теплообменных систем [16]. Анализ процессов химической технологии на основе первого закона термодинамики находит широкое практическое применение. Наряду с этим все большее распространение получают методы анализа на основе второго начала термодинамики, в частности (используемые исходя из концепции эксергии как меры превратп-мости энергии), при оптимизации и проектировании технологических производств (см. гл. 7). Привлекательность этих методов заключается в том, что имеется возмо кность оценить в общем случае минимально возмо кные потери энергии за счет необратимости процесса и тем самым определить реальные перспективы совершенствования процесса. Развитие этих термодинамических методов идет по пути получения количественной информации о совершенстве протекания отдельных явлений. Что касается качественных выводов, то они хорошо известны. Например, потери превратимой энергии отсутствуют при смешении потоков, находящихся в термодинамическом равновесии, или потери энергии в противоточном теплообменнике выше, чем в прямоточном, равно как с увеличением поверхности теплообмзна потери за счет необратимости нроцесса снижаются. [c.466]

    Однако в каком направлении будет в действительности протекать процесс, нри каком соотношении концентраций реагентов установится состояние равновесия химической реакции и как температура и давле1те влияют иа это состояние равновесия — на все этп вопросы первое начало не может ответить. Ответ на эти вопросы дает второе начало термодинамики. [c.106]

    Как было указано вьине, в результате адсорбции происходит перераспределение компонентов между объемными фазами и поверхностным слоем, что влечет за собой изменение их химических потенциалов в системе, поэтому этот процесс можно рассматривать как превращение поверхностной энергии в химическую. Выведем соотношение между иоверхиостР ым натяжением и химическими потенциалами компонентов системы. Объединенное уравнение первого и второго начал термодинамики для внутренней энергии поверхности с учетом поверхностной и химической энергии имеет вид (объем поверхности равен нулю) [c.35]

    Чтобы вывести условия фазового равновесия в общем виде, нужно в объединенное уравнение первого и второго начал термодинамики (IV.45) ввести в качестве независимых переменных числа молей веществ, хара1ктеризующих химическое состояние системы. [c.202]

    Термодинамика как научная дисциплина сложилась в начале XIX в. на основании данных по изучению перехода теплоты в механическую работу (с греческого Легте и dynamis — теплота и движение). В настоящее время термодинамика как одна из дисциплин с наиболее общим подходом в характеристике физико-химических явлений, устанавливает взаимосвязь между различными видами энергии, изучает возможность, направленность и пределы самопроизвольно текущих процессов. Раздел этой науки, изучающий химические реакции, фазовые переходы (кристаллизация, растворение, испарение), адсорбцию, взаимосвязь химической и других видов энергии, а также переход энергии от одной части системы к другой в различных химических процессах называется химической термодинамикой. Изучение происходящих в природе явлений с позиций термодинамики не требует знания причин и механизмов идущих процессов, представлений о строении вещества и т. п. Теоретическо базой этого раздела физической химии являются основные законы — первое и второе начало термодинамики. Первое начало, характеризующее общий запас энергии в изолированной системе, носит всеобщий характер и является отражением закона сохранения энергии второй закон термодинамики устанавливает понятие энтропии и выполняется при определенных ограничениях. В настоящей главе представляется возможным только кратко остановиться на основных положениях. [c.10]

    Важнейшей задачей термодинамики в XIX в. было создание теории тепловых машин. В связи с этим значительная часть термодинамических исследований была посвящена круговым процессам и изучению свойств газов и паров. Обобщением этих исследований явились первое и второе начала термодинамики. В конце XIX в. на базе обоих начал возникла химическая термодинамика, объектом которой стала химическая реакция. В текущем столетии химическая термодинамика получила практическое приложение. Важнейшей характеристикой.химической реакции служит химическое равновесие, определяемое по закону действующих масс соотношением концентраций взаимодействующих веществ. Однако смещение равновесия может происходить и при изменении температуры. Я. Вант-Гофф показал в 1884 г., что влияние температуры на равновесие зависит от теплового эффекта реакции. Исходя из уравнения Клаузиуса—Клапейрона, Я. Вант-Гофф вывел уравнение изохоры реакции  [c.241]

    Значение второго начала термодинамики для химии можно пояснить следующим типичным примером. Эквимолярная смесь азота, водорода и аммиака заполняет сосуд под умеренным давлением при высокой температуре, когда реакции идут быстро. Реакция N2ЗН2 = 2МНз в этой смеси мыслима в обоих направлениях, одинаково не противоречащих первому началу. В действительности же в указанных условиях она идет лишь в сторону разложения аммиака до тех пор, пока его не останется в смеси очень малое, но вполне определенное количество. После этого реакция останавливается и наступает состояние, называемое химическим равновесием. Очевидно, что выбранные условия мало пригодны для синтеза аммиака азотно-водородная смесь прореагирует лишь в очень малой доле и значительных количеств аммиака получить из нее не удастся. Второе начало позволяет все это предвидеть, указать зависимость равновесных концентраций от давления и температуры и выбрать наиболее благоприятные условия для получения нужных продуктов. Действительно, созданию важной промышленности синтетического аммиака предшествовало термодинамическое исследование, установившее оптимальные условия реакции. [c.288]

    Уравнение (VI, 12) имеет весьма важное значение, так как оно включает основное содержание первого и второго начал термодинамики. Для химических систем представляет особый интерес рассмотрение изотермических процессов, протекающих при постоянном объеме или при постоянном давлении. Максимальная работа в изотермических пзохорпых процессах (v --= onst и Т= onst) получается за счет убыли свободной энергии и определяется, согласно уравнению (VI,12), изменениями внутренней энергии и энтропии  [c.86]

    Естественно, что и до этого времени был получен целый ряд выдающихся результатов, на базе которых развивались те или иные разделы физической химии. Можно перечислить некоторые из них открытие адсорбции газов (К. Шееле — в Швеции, 1773 г., Ф. Фонтана — во Франции, 1777 г.), адсорбции из растворов (Т. Е. Ловиц — в России, 1785 г.) открытие каталитических реакций и установление представлений о катализе (Г. Дэви и Л. Тенар — в Англии, И. Берцелиус — в Швеции, начало XIX в.) открытие гальванических элементов и исследование переноса тока в электролитах, открытие электролиза (Л. Гальвани, А. Вольта — в Италии, В. В. Петров, К. Грот-гус — в России, Г. Дэви, М. Фарадей — в Англии, конец XVIII в. — начало XIX в.) исследование теплоты химических реакций (А. Лавуазье, П. Лаплас — во Франции, 1779—1784 гг., Г. Гесс — в России, 1836—1840 гг.) открытие первого и второго законов термодинамики (С. Карно — во Франции, Р. Майер, Г. Гельмгольц, Р. Клаузиус — в Германии, Дж. Джоуль, В. Томсон— в Англии, середина XIX в.) и последующее развитие тер-модинамического учения о химическом равновесии (К. Гуль-берг и П. Вааге —в Норвегии, Гиббс —в США). [c.7]

    Книга является третьим изданием (второе издание вышло в 1953 г.) учебного пособия по химической термодинамике для студентов химико-технологических специальностей высших учебных заведений. В ней изложены первое начало термодинамики и его приложение к термохимии, второе начало, термодинамические потенциалы н обш,ие условия равно весия, свойства однокомпоиентных гомогенных и гетерогенных систем, характеристика растворов и фазовые равновесия в них, химическое равновесие и основы статистического расчета термодинамических функций по спектроскопическим данным. [c.2]

    Все сказанное послужило основанием внести суш,ественные изменения в третье издание учебника по физической и коллоидной химии. В учебник включены новые главы элементы учения о превращениях энергии при химических процессах (первое и второе начало термодинамики и т. д.). Эти знания необходимы медику для правильного представления об обмене энергии, протекающем, в живом организме в результате разнообразных биохимических процессов. Внесен раздел о физико хнмичес1р1х свойствах и биологическом значении воды, которая является одной из важных составных частей животного организма, а также в учебник внесен ряд дополнений почти во все разделы курса по физической и коллоидной химии, из которых одни несколько расширяют имеющиеся представления по отдельным главам учебника, другие же являются дополнениями о новых данных науки, полученных в последние годы. [c.3]

    В. 50-е годы XIX в. наметилось более тесное сближение между физикой и химией. Этому способствовали атомистические представления, в частности кинетическая теория газов, оказавшая в дальнейшем огромное влияние на развитие физической химни. В химии же после классических работ А. Сент-Клер Девиля по термической диссоциации соединений изучение процессов и способов их осуществления выдвинулось на первый план. Развитие этого направления исследований привело к созданию химической статики и проникновению в химию первого, а затем второго закона термодинамики. Рассмотрение равновесных состояний как определенного аспекта химического процесса было той основой, на которой началось сближение между физикой и химией, прогрессивно углубляющееся с годами. [c.300]

    На первый взгляд, может сложиться представление б дто использование функций распределения является лишь сугубо вычислительным npиeмo i. Нетрудно показать, что применение формул распределения является прямым следствием ряда фундаментальных положений физйки и химической термодинамики и, в частности, второго начала термодинамики [2]. [c.219]


Смотреть страницы где упоминается термин Химическая термодинамика. Первое и второе начала термодинамики: [c.410]    [c.167]    [c.112]    [c.19]    [c.176]    [c.91]    [c.70]    [c.330]   
Смотреть главы в:

Физическая химия -> Химическая термодинамика. Первое и второе начала термодинамики




ПОИСК





Смотрите так же термины и статьи:

Второе начало термодинамики

Начала тел

Начала термодинамики второе

Начала термодинамики первое

Первое начало термодинамики

Термодинамика химическая

Термодинамики второй

Термодинамики первый



© 2025 chem21.info Реклама на сайте