Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Особенности титрования в неводных растворителях

    Потенциометрическое неводное титрование подобно титрованию в воде. Особенности его заключаются в том, что его проводят под тягой, титранты готовят в неводных растворителях и электроды сравнения заполняют насыщенным раствором КС1 в том растворителе, в котором титруют, или в спирте. [c.109]

    Неводное потенциометрическое титрование. Неводное потенциометрическое титрование как физико-химический метод анализа получило в последние годы широкое применение. Особенно широко оно применяется для анализа фармацевтических препаратов. Это объясняется тем, что многие лекарственные вещества представляют собой очень слабые кислоты и основания (Кц и /(в ЬЮ ), Они не могут количественно титроваться в воде. Замена растворителя [c.196]


    Особенности титрования в неводных растворителях [c.350]

    Потенциометрическое титрование методом нейтрализации применяют при титровании в неводных растворителях. Особенности титрования в неводных растворителях связаны прежде всего с тем, что константы диссоциации в зтих средах меняются (табл. 33). [c.395]

    Неводное титрование, титрование в неводных средах, неводная титриметрия — титрование, при котором средой служит неводный растворитель с небольшим содержанием растворенной воды (менее 0,5%) [99]. Особенно часто неводное титрование применяют для кислотно-основных определений. [c.34]

    Титрование в неводных и смешанных растворителях открывает возможности аналитических определений, не осуществимых в водном растворе. В неводных растворителях могут быть определены нерастворимые или разлагающиеся в воде соединения, проанализированы без предварительного разделения многие сложные смеси, оттитрованы соединения, кислотные или основные свойства которых в воде выражены очень слабо, и т. д. Расчет кривых титрования во многих неводных растворителях осложняется по сравнению с таким же расчетом для водных растворов неполнотой диссоциации растворенных веществ, образованием ионных пар и т. д. Количественные характеристики этих процессов часто отсутствуют. Сами кривые титрования имеют примерно такой же общий вид, как и кривые титрования водных растворов. Точка эквивалентности в неводных растворах устанавливается также с помощью цветных индикаторов или рН-метров. Конечно, интервал перехода индикаторов и сама их окраска в неводных растворителях могут меняться по сравнению с соответствующими свойствами в водных растворах, однако механизм индикаторного действия сохраняется. В неводных титрованиях обычно применяют те же известные по анализу водных растворов индикаторы — фенолфталеин, метиловый красный и др., широко используют рН-метры, особенно при анализе смесей. [c.217]

    Потенциометрическое титрование можно применять в неводных средах, что особенно важно для анализа нефтепродуктов, так как они не растворяются в воде. Природа растворителя влияет на процесс титрования (на степень диссоциации кислот и оснований). Для рационального выбора растворителя следует учитывать, что сила кислот увеличивается в основных растворителях, а сила оснований — в кислых. [c.176]


    Экспериментальное осуществление неводного потенциометрического титрования. Этот вид титрования осуществляется принципиально так же, как титрование в воде. Некоторые особенности неводного титрования заключаются в том, что 1) титранты готовят в неводном растворителе и 2) электрод сравнения (каломельный или хлорсеребряный) заполняют насыщенным раствором K I в том растворителе, в котором титруют, или в спирте. [c.197]

    Каковы особенности потенциометрического титрования в неводных средах Какие требования предъявляются к неводному растворителю  [c.246]

    Стеклянные электроды широко используются в качестве индикаторных систем при кислотно-основном титровании в неводных растворителях, особенно в ледяной уксусной кислоте. В обзорах, обобщающих работы, которые выполнены вплоть до 1959 г. [188, 421], рассматривался лишь один апротонный растворитель с высокой диэлектрической постоянной — ацетонитрил. [c.216]

    Титриметрия в неводных растворителях. На силу кислотно-основной системы и на особенности ее титрования влияют кислотноосновные свойства растворителя и его диэлектрическая проницаемость. При титровании слабого основания (Кь = —10" ) сильной кислотой в воде между молекулами воды и основания возникает конкуренция за протоны  [c.49]

    Основное внимание в книге уделено рассмотрению прямых химико-аналитических методов титрования органических веществ. Кроме того, приведены некоторые примеры титрования, используемые с целью изучения таких физико-химических проблем, как кинетика, определение констант диссоциации, исследование свойств растворителей, стандарты, индикаторные или электродные системы, комплексообразование (особенно в неводных растворах) и т. д. [c.67]

    Условия титрования. Часто титрование проводят в неводных растворителях, особенно в случаях титрований, основанных на реакциях, указанных в пунктах 1, 2 и 4. [c.121]

    В неводных средах и особенно в инертных растворителях стеклянные электроды даже одного и того же образца могут проявлять разные свойства. Эффективность выбранных электродов не всегда удается регулировать или улучшить, вводя вспомогательные электролиты. Свойства электрода сильно зависят от его предварительной обработки. Но, конечно, невозможно знать предысторию каждого стеклянного электрода. В большинстве случаев, однако, электрод перед употреблением оставляют набухать на 12—48 час в растворителе, в котором предполагается его использовать [894]. Эта процедура также необходима для проведения относительных потенциометрических измерений. Все это затрудняет выбор подходящего растворителя трудности особенно возрастают, если, следуя методике, необходимо заменить растворитель в процессе выполнения титрования. Так, может случиться, что стеклянный электрод, предварительно находившийся в уксусном ангидриде, не будет работать безошибочно в среде уксусной кислоты. При титровании хлорной кислотой в уксусной кислоте часто достаточно предварительно погрузить стеклянный электрод на 1—2 час в смесь уксусного ангидрида с уксусной кислотой (1 10). После употребления стеклянный электрод споласкивают вначале чистым растворителем, затем метиловым спиртом и водой и хранят его в дистиллированной воде. [c.171]

    Таким образом, можно сделать вывод, что при выборе метода титрования кислот, оснований и солей в неводных растворах и особенно при выборе метода дифференцированного определения смесей электролитов необходимо правильно выбрать среду для титрования (растворитель), титрованный раствор реактива (титрант) и способ определения точки эквивалентности. Только согласованный выбор этих условий титрования может привести к более простому и эффективному методу дифференцированного определения смеси электролитов. [c.55]

    В области неводной титриметрии проведено сравнительно немного фундаментальных исследований, однако она находит очень широкое практическое применение. Большинство исследований направлено на выяснение стехиометрических соотношений кислотно-основных реакций, непригодных для аналитических целей в водной среде, а также на сравнение результатов, полученных при использовании различных индикаторов, с одной стороны, и электрометрических методов установления конечной точки — с другой. Даже при отсутствии количественных данных, характеризующих равновесную систему, — кстати, довольно частое явление, особенно при использовании смешанных растворителей, — для решения вопроса о применении того или иного растворителя и титранта в каждом отдельном случае обычно достаточно понимания общих принципов кислотно-основного титрования. [c.120]

    Метод потенциометрического титрования оказывается особенно полезным при изучении интенсивно окрашенных систем, которые нельзя анализировать при помош,и обычных визуальных индикаторов, а также при титровании в неводных средах. Метод является эффективным средством изучения систем, в которых наблюдается заметное взаимодействие продуктов реакции с растворителем, и систем, для которых не удается подобрать внутренний индикатор. При помощи потенциометрического титрования удается также оценить пригодность того или иного визуального индикатора для разрабатываемых методик анализа. [c.420]


    Фторид водорода применяют в качестве растворителя для кислотно-основного титрования, в особенности для титрования фторидов различных элементов. Фториды щелочных и щелочноземельных металлов, являясь донорами фторид-ионов, ведут себя в НР как основания. Следовательно, они могут быть оттитрованы стандартными неводными растворами кислот. [c.74]

    Метод принципиально не отличается от титриметрического анализа водных растворов, однако обладает некогорыми существенными преимуществами. Так, возможность широко варьировать свойства применяемых растворителей позволяет подбирать их так, чтобы значения тех или иных физико-химических характеристик компонентов пробы (например, их констант диссоциации), близкие-в водных растворах, заметно различались бы в соответствующем неводном растворителе. Удачный выбор растворителя, обладающего подобным дифференцирующим действием, позволяет раздельно титровать кис-, лоты, основания и соли в составе их сложных смесей. Кроме того, в неводных средах можно определять содержание веществ, нерастворимых в воде, разлагающихся ею или образующих в водных растворах, стойкие нерасслаивающиеся эмульсии. Неводное титрование особенно эффективно для определения органических соедйнёний различных классов. [c.342]

    Успехи органической химии привели к синтезу многих но-еых органических растворителей с большим диапазоном разнообразных свойств, а с развитием лабораторной техники появилась возможность работать с новыми неорганическими растворителями при повышенных и пониженных температурах и без-Доступа влаги. Все это позволило в некоторых случаях замедлить воду, являющуюся до сих пор универсальным растворителем. Особенно часто воду заменяют другими растворителями при кислотно-основноМ титровании. Причинами служат плохая растворимость некоторых веществ в воде, что особенно характерно для многих органических соединений мешающее влияние гидролиза, например, при титровании кислот в присутствии хлоридов или соответственно ангидридов кислот нивелирующий эффект растворителя, из-за которого невозможно Проводить дифференцированное титрование сильных кислот или оснований в их смеся х высокая полярность воды, что-исключает возможность диффренцированного титрования карбоновых кислот в их смесях. Применению неводных растворителей способствовало также создание чувствительных и надежных инструментальных методов индикации точки эквивалентности. [c.337]

    Для титрования в неводных средах (см. стр. 49) в качестве растворителя пригодна уксусная кислота. Вследствие своего амфипротного характера (константа аутопрсто-лиза р/С 14,4 DK = 6,13) она особенно пригодна для титрования таких слабых оснований, при титровании которых в воде не получаются удовлетворительные кривые титрования. В безводной уксусной кислоте возможна визуальная индикация конечной точки титрования с окрашенными индикаторами, однако выбор их может быть осуществлен только эмпирически. [c.79]

    Влияние воды. Присутствие воды в неводных растворителях (в особенности высокошкальных), как правило, оказывает неблагоприятный эффект на процессе титрования. Это объясняется тем, что кислоты реагируют с водой как с основанием, а основания— как с кислотой (см. стр. 425). В результате многие реакции нейтрализации протекают не [c.427]

    В иоследовз ниях последних лет, особенно в работах Н. А. Измайлова, было показано, что ПО Д влиянием неводных растворителей изменяются свойства любых электролитов кислот, оснований, солей. В зависимости от свойств и структуры растворителя одно и то же вещество может быть неэлектролитом, Сильным или слабым электролитом, кислотой или основанием или же вовсе не проявлять кислотно-основных свойств. Подобная зависимость ц изменение свойств вещества под влиянием растворителей широко используются в данное время для решения ряда аналитических задач при электрометрическом титровании, поля-ро графи ческом, амперометричеоком и других методах физикохимического анализа для а) повышения либо понижения растворимости вещества б) усиления либо ослабления силы кислот, оснований и солей в) изменения соотношения между ионным [c.129]

    ВОДНЫХ средах допустимо наличие посторонних веществ основного характера в большем количестве, чем в воде, без влияния на конечную точку титруемого основания. Таким образом, некоторые неводные растворители в сравнении с обычными растворителями меньше подвержены влиянию концентрации. Непротолитические растворители в этом отношении особенно хороши, в то время как растворители, подобные метанолу, ведут себя аналогично воде. Это хорошо иллюстрируется данными, ириведенными на рис. 6 для случая титрования триэтиламина в присутствии большой концентрации диэтилацетамида. При концентрации амида в 1000 раз большей, чем амина, скачок потенциала при титровании в ацетонитриле значительно больше, чем при титровании в метаноле. Однако ири эквимолярных концентрациях амина и амида различие между величинами потенциала незначительно. [c.25]

    Потенциометрическое титрование можно применять в неводных средахЭтот вид титрования особенно важен для анализа лакокрасочных композиций, большинство которых не растворяется в воде. Природа растворителя влияет на величину константы диссоциации кислот и оснований. Варьируя состав растворителя, можно создать благоприятные условия для раздельного титрования компонентов таких смесей, которые в водной среде не могут быть оттитрованы раздельно. [c.68]

    В среде неводных растворителей успешно титруют алифатиче-ские и ароматические кислоты и их окси-, галоген-, нитро- и другие производные [128, 407, 451]. Особенно большое значение имеет титрование нерастворимых в воде высших жирных кислот, таких как капроновая, энантовая, каприловая, пеларгоновая, каприно-вая, лауриновая, пальмитиновая, стеариновая, бегеновая и другие [369, 388, 452]. Из ароматических карбоновых кислот в среде неводных растворителей можно титровать бензойную кислоту и ее нитро-, галоген- и оксипроизводные, а- и р-нафталинкарбоно-вые кислоты и их производные и ряд других ароматических кислот [376, 383]. Все карбоновые кислоты можно с достаточной степенью точности титровать в среде спиртов [369], кетонов [305, 353, 367], хлороформа [128, 386], бензола 1386, 452], толуола [386], пиридина [326], этилендиамина и диметилформамида [434], в смеси диоксана с водой [381, 382] и в ряде других растворителей [388]. [c.117]

    Как показали наши исследования силы кислот в неводных растворителях, особенно в ацетоне, дифференцирующее действие растворителей на силу кислот 1не исчерпывается только дифференцированием силы сильных кислот в растворителях с малой основностью. Такие растворители, как ацетон метилэтилкетон, галоидауглеводороды и даже пиридин резко уси-, швают различие между собой слабых и сильных кислот. Это изменение в соотношении силы сильных и слабых кислот было установлено нами несколькими методами потенциометрическим титрованием сильных и слабых кислот в их смесях, титрованием солей по вытеснению и, наконец, исследованием констант диссоциации сильных и слабых кислот. При этом было установлено, что соотношение в их силе изменяется в десятки и сотни тысяч раз. Наряду с изменением соотношения в силе сильных и слабых кислот нами было установлено, что эти рас-ТБорители изменяют соотношение в силе слабых кислот. Кислоты, одинаково сильные в воде, в ацетоне и в других раство-риГелях, не содержащих гидроксильных групп, отличаются в сотни и тысячи раз. Это было установлено при соиоставле-гши собственных и имеющихся в литературе данных о константах диссоциации в ряде растворителей. Следовательно [c.507]

    Как следует из седьмой и восьмой глав, под влиянием растворителей также изменяются соотношения в силе кислот или в силе оснований (дифференцирующее д ейств ие растворителей). Это изменение соотношения в константах диссоци-гции кислот или оснований в неводных, особенно в дифференцирующих, растворителях с успехом использовано автором я другими исследователями для улучшения условий раздельного титрования смеси кислот, смеси оснований и солей по вытеснению. [c.873]

    Основность амидов определяли в неводных растворителях (главным образом в уксусной кислоте) с помощью титрования и метода индикаторов. Особенно важны эти измерения для алифатических амидов, которые не дают подходящих УФ-спектров. Показано [178], что уравнение (118) описывает связь значений рКа в уксусной кислоте и в воде для многих органических оснований, включая амиды. Однако, Хомер и Джонсон [149] считают, что уравнение (118) завышает значения рКа (HjO) примерно на 0,5. Методика титрования была применена к лактамам, у которых основность возрастает по мере увеличения размера кольца, но остается постоянной (р/СаснгО) == 0,52) для лактамов с восьмичленными и с большими циклами [179]. Основность амидов в среде хлорная — уксусная кислота определена также непрямым методом с помощью индикаторов. По этой методике находят константу диссоциации, из которой можно определить р/(а(НгО), как описано в работе [149]. [c.440]

    Влияние воды. Присутствие воды в неводных растворителях (в особенности высокошкальных), как правило, оказывает неблагоприятный эффект на процесс титрования. Это объясняется тем, что кислоты реагируют с водой как с основанием, а основания — как с кислотой (см. с. 437 и 438). В результате многие реакции нейтрализации протекают не количественно, так как титранты реагируют не только с определенным веществом, но и с ионами воды. [c.446]

    При использовании метода пипетирования, особенно в случае работы с жидкими веществами, рассчитанную навеску анализируемого образца взвешивают на аналитических весах и растворяют в мерных колбах емкостью 50, 100 или 250 мл. Раствор желательно готовить в том растворителе, в среде которого проводят титрование. Аликвотную часть раствора отбирают пипеткой емкостью 10, 15, 20 или 25 мл с помощью резиновой груши во избежание попадания в рот органических растворителей, большинство из которых ядовито. Установку для титрования в неводных растворах следует располагать вблизи вытяжного вентиляционного отверстия, а при использовании сильнопахнущих растворителей — в вытяжном шкафу. [c.62]

    С водой диметил формам ид смешивается в любом соотношении, но при этом гидролизуется с образованием диметиламина и муравьиной кислоты. Однако этот процесс при комнатной температуре практичеани не идет как в присутствии кислот, так и в присутствии щелочей. Последнее обстоятельство является причиной популярности диметилформамида в аналитической химии, где он используется как растворитель для неводного титрования кислотами и щелочами [21]. Гидролиз ускоряется с повышением температуры. Муравьиная кислота, образующаяся при гидролизе, вызывает коррозию оборудования. Диметиламин вследствие высокой летучести (температура кипения + 7,4°) частично покидает систему, а частично связывается муравьиной кислотой с образованием формиата диметиламина. Вследствие этого возникают трудности при регенерации ДМФА из рафинатного и особенно из акстрактного раствора. [c.85]

    Отсюда необходимо сделать вывод, что, хотя титрование слабых оснований в неводных сверхкислых растворах часто дает хорошие значения основности, которые легко переводятся в водную шкалу кислотности, этот метод не всегда приемлем и может ввести в заблуждение, особенно в случае оснований, которые сами по себе являются хорошими ионизирующими растворителями. [c.215]


Смотреть страницы где упоминается термин Особенности титрования в неводных растворителях: [c.338]    [c.326]    [c.86]    [c.423]    [c.409]    [c.530]   
Смотреть главы в:

Анорганикум. Т.2 -> Особенности титрования в неводных растворителях




ПОИСК





Смотрите так же термины и статьи:

Неводные растворители

Титрование неводное



© 2025 chem21.info Реклама на сайте