Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

О диффузии в системах с неоднородной температурой

    О диффузии в системах с неоднородной температурой [c.328]

    Процесс молекулярного переноса массы, вызванный неоднородностью температуры внутри смеси, называется термической диффузией. В результате термической диффузии система приходит в равновесное состояние, при этом эффекты разделения и перемешивания взаимно уравновешиваются. Эффект разделения вызывается разностью температур, эффект перемешивания — возникшей при этом разностью концентраций. Эффект термической диффузии оценивается величиной разделения АА, или термодиффузионным отношением Кт, которые связаны между собой следующим образом  [c.498]


    Диффузия в системах с однородной температурой 15. О диффузии в системах с неоднородной температурой [c.391]

    Это есть уравнения Фика, Фурье и Ньютона, в которых О — коэффициент диффузии с — концентрация х — координата Т — температура Я, — коэффициент теплопроводности т] — коэффициент вязкости V — скорость движения потока. Эти уравнения фактически определяют скорость приближения системы к равновесию. Эти уравнения можно дополнить конвективным членом, членом, учитывающим диффузию, неоднородность системы по фазовому состоянию и химический процесс, а также другие составляющие потока. [c.252]

    Феноменологические соотношения, определенные в подразделе 1.1, играют важную роль в термодинамике необратимых процессов. Общую основу макроскопического описания необратимых процессов составляет неравновесная термодинамика, которая строится как теория сплошной среды и параметры которой, в отличие от равновесной термодинамики, являются функциями пространственных координат и времени. Центральное место в неравновесной термодинамике играет уравнение баланса энтропии [10]. Это уравнение выражает тот факт, что энтропия некоторого элемента объема сплошной среды изменяется со временем за счет потока энтропии в рассматриваемый объем извне и за счет положительного источника энтропии, обусловленного необходимыми процессами внутри объема. При обратимых процессах источники энтропии отсутствуют. В этом состоит локальная формулировка второго закона термодинамики. Поэтому основной задачей в теории необратимых процессов является получение выражения для источника энтропии. Для этого необходимо использовать законы сохранения массы, количества движения и энергии в дифференциальной форме, полученные в разделе 1. В уравнения сохранения входят потоки диффузии, тепла и тензор напряжений, которые характеризуют перенос массы, энергии и импульса. Важную роль играет термодинамическое уравнение Гиббса (5.49), которое связывает скорость изменения энтропии со скоростями изменения энергии и состава смеси. Оказывается, что выражение для интенсивности источника энтропии представляет собой сумму членов, каждый из которых является произведением потока, характеризующего необратимый процесс, и величины, называемой термодинамической силой. Термодинамическая сила связана с неоднородностью системы или с отклонением параметра от его равновесного значения. Потоки, в свою очередь, в первом приближении линейно зависят от термодинамических сил в соответствии с феноменологическими соотношениями. Эти линейные законы отражают зависимость потока от всех термодинамических сил, т. е. учитывают перекрестные эффекты. Так, поток вещества зависит не только от градиента концентрации, но и от градиентов давления, температуры, электрического потенциала и т. д. Неравновесная термодинамика ограничивается в основном изучением линейных феноменологических соотношений. [c.83]


    Системы с обращенной фазой обычно менее эффективны, чем другие жидко-жидкостные системы, ввиду более медленной диффузии растворенного вещества в более полярных (и более вязких) подвижных фазах. Кроме того, эффективность колонки также снижается из-за неоднородного покрытия полимерной неподвижной фазой твердого носителя. Чтобы повысить эффективность системы с обращенной фазой, следует отбирать подвижные фазы с наи-меньщей вязкостью например, в качестве модификатора предпочтительней использовать метанол, а не изопропанол. Чтобы улучшить массоперенос, температуру колонки, если возможно, также следует поддерживать выше комнатной. К сожалению, повышение температуры при использовании жидких или несвязанных полимерных неподвижных фаз приводит к уменьшению времени жизни колонки. [c.276]

    Таким образом, области / на диаграмме состояния рассматриваемой системы (рис. 151) отвечает расплав, области II — сосуществование расплава и кристаллов твердого раствора, области III— твердый раствор. При равновесии точки обеих кривых на диаграмме связаны между собой каждой температуре отвечает расплав определенного состава и кристаллы тоже определенного состава, но другого, чем состав расплава (например, точке е отвечает точка р). В ходе процесса кристаллизации температура системы понижается и равновесие между расплавом и кристаллами, образовавшимися ранее, т. е. при более высокой температуре, нарушается. Поэтому кристаллизация сопровождается диффузией, в результате чего при медленном проведении процесса зерна всего сплава получаются однородными и имеют одинаковый состав. При быстром охлаждении процессы диффузии не успевают происходить и сплав получается неоднородным. [c.542]

    Полимеризация жидкого мономера без разбавителей называется блочной полимеризацией. Обычно мономер нагревают в автоклаве или другом подходящем аппарате. Катализатор, если он нерастворим в мономере, вводят в предельно диспергированном состоянии или в виде тонкой пленки на носителе. Полимеризация начинается на поверхности катализатора, который вскоре после начала процесса покрывается слоем полимера. В дальнейшем процесс продолжается благодаря диффузии мономера в набухший полимер. В процессе полимеризации наблюдается увеличение вязкости системы и как следствие из-за плохого отвода тепла в микрообъемах температура достигает существенно более высоких значений, чем это диктуется условиями полимеризации. Из-за высокой вязкости системы затрудняется обрыв цепи, и получается неоднородный полимер с повышенной средней молекулярной массой и широким молекулярно-массовым распределением. Для регулирования молекулярной массы при блочной полимеризации температуру из.меняют по сложной программе. [c.101]

    Обычно процессами переноса называют релаксационные процессы, в которых устанавливается равновесие в пространственно неоднородных системах. К процессам переноса относится, например, теплопроводность, которая выравнивает температуры в неоднородно нагретом теле. При этом происходит перенос энергии от горячих областей к холодным, что и объясняет название — процесс переноса. Из общего курса физики известны другие процессы переноса вязкость — перенос импульса, диффузия — перенос массы. [c.222]

    Пусть рассматривается явление молекулярной диффузии при постоянных давлении и температуре в диффузионном пограничном слое газовой фазы неоднородной по составу бинарной системы комнонентов а и w. [c.63]

    В ходе процесса кристаллизации температура системы понижается и равновесие между расплавом и кристаллами, образовавшимися ранее, т, е. при более высокой температуре, нарушается. Поэгому кристаллизация сопровождается диффузией, в результате чего при медленном проведении процесса зерна всего сплава получаются однородными и имеют одинаковый состав. При быстром охлаждении процессы диффузии не успевают происходить и сплза получается неоднородным. [c.549]

    Математическое описание процесса зонной очистки. Рассмотрим диаграмму состояния бинарной системы с ограниченной областью твердых растворов. При равновесной кристаллизации из жидкости состава X при температуре выпадают первые кристаллы состава у. При дальнейшем охлаждении состав жидкости будет меняться в направлении, соответствующем аа, а состав кристаллов — в направлении ЬЬ (см. рис. 32). Если кристаллизация происходит в неравновесных условиях, то в сплаве сохраняется неоднородность состава. В реальных условиях при понижении температуры диффузия в кристаллах подавлена. Содержание тугоплавкового компонента оказывается больше в центре кристалла (зерна), а к его периферии уменьшается (ликвация или сегрегация). Можно рассчитать содержание примеси в твердой фазе после однократной зонной перекристаллизации. Для простоты расчетов допускают (приближение Пфаниа), что 1) диффузия в твердой фазе практически отсутствует D,, = 0 2) в расплавленной зоне происходит полное перемешивание D,, = оо 3) величина равновесного коэффициента распределения постоянна А о = onst = k 4) объем материала при плавлении и затвердевании не изменяется 5) можно пренебречь газообменом между твердой фазой, расплавом и паром. Тогда распределение примеси в основном веществе при к < 1 [c.91]


    В окрестности критической точки расслаивания раствора работа, требующаяся для образования флуктуаций концентрации, очень мала. Статистическое среднее квадрата флуктуаций концентрации возрастает. Даже малые локальные изменения состояния раствора оказывают заметное влияиие на состав сравнительно больших его участков. Иначе говоря, возрастает радиус корреляции флуктуаций концентрации. В окрестности критической точки при (Т—Т ) 1—2° флуктуации концентрации встречаются так часто, что лучи света, попадающие в раствор, нередко испытывают многократное рассеяние, прежде чем выйти наружу. Поэтому раствор становится мутным. Наблюдается критическая опалесценция. Постепенно радиус корреляции флуктуаций концентрации Ь достигает величин порядка 10 м, сравнимых с длиной волны света. Тогда при рассеянии света возникают отклонения от закона Релея. При устранении помех, связанных с многократным рассеянием, и тщательном термостатировангш отклонения от закона Релея нередко наблюдаются лишь в узком интервале температур, при Т—Гк1С0,1 [42]. Растворы с развитыми флуктуациями концентрации похожи на дисперсные системы с очень малыми неоднородностями. Отличие от обычных дисперсных систем состоит в том, что флуктуации концентрации неустойчивы Они случайно возникают и быстро исчезают. Среднее время их существования т обратно пропорционалыю коэффициенту диффузии. Исследования, выполненные автором и его сотр. [43], показали, что в растворах с положительными отклонениями от идеальности, состояние которых далеко от критической точки расслаивания, -с может лежать в интервале 10 — 10 с. Время 10" с само по себе очень малое, в молекулярных [c.154]

    Приведенные выше соотношения для времен релаксации Т р, и функции релаксации (спада) поперечной намагниченности справедливы при условии существования единой спиновой системы образца и изотропном характере молекулярного движения, когда при Тс- 0 диполь-дипольные взаимодействия ус-редняются полностью. В полимерах эти условия часто не выполняются. В зависимости от химической структуры и морфологии полимера, от интенсивности молекулярного движения спиновая система может быть как однородной (единой), так и неоднородной, т. е. распадаться на отдельные подсистемы (или фазы), характеризуемые собственной спиновой температурой. Подсистемы могут находиться в тепловом равновесии между собой, образуя единую спин-снстему, если процессы взаимного опрокидывания спинов (диффузии спинов) ведут не только к выравниванию локальных различий в поляризации (намагни- [c.262]

    Рентгенографические исследования нескольких образцов алмаза, отожженных в интервале температур 870—1070 К, показывают, что при отжиге активизируются процессы упорядочения сплавов во включениях с образованием твердого раствора N4 и Мп. Поскольку процесс упорядочения зависит как от температуры, так и от продолжительности отжига, можно заключить, что увеличение намагниченности после отжига при 990 К обусловлено начальной стадией процесса формирования упорядоченного соединения, и при этом средний магнитный момент на атом сплава возрастает по правилу простого смещения (см. пунктирную линию на рис. 161,6). По мере выравнивания распределения во включении усиливается влияние антиферромагнитной компоненты обменного взаимодействия между атомами Мп и магнитный момент сплава уменьшается (см. сплошную кривую линию на рис. 161,6). Выравниванию распределения марганца во включениях способствует сравнительно высокий коэффициент диффузии атомов Мп в N1—Мп сплавах. Для бипарных сплавов системы N1—Мп известно, что в интервале температур 1070—1270 К коэффициент диффузии Мп в 2—3 раза выше, чем N1, а коэффициент взаимо-диффузии экспоненциально возрастает с увеличением атомного содержания Мп в соединении до 35%. Следовательно, экспериментально установленные особенности изменения магнитных свойств синтетических алмазов, содержащих включения N1—Мп-соедине-ний, определяются диффузионными процессами в этих сплавах и зависят как от концентрации атомов Мп в сплаве, так и от степени неоднородности исходного состава по объему соединения. [c.446]

    Если в многокомпонентной системе имеются неоднородные поля концентраций компонентов и температуры, то в ней будет наблюдаться одновременно перенос энтропии и частиц компонентов, обусловленный теплопроводностью и диффузионным термоэффектом, а такнге диффузией и термодиффузией. Термодинамика необ- [c.293]

    Вязкость растворов была исследована Фридлендером [51, обнаружившим ее возрастание на закритических изотермах, и Е. Л. Зориной [6]. Сообщение об анало гичном поведении вязкости в системе жидкость — пар (для углекислоты) появилось в 1957 г. в работе Михельса с сотрудниками [71. В. К- Семенченко предсказал этот эффект в 1947 г., но экспериментаторы не предприняли тогда целенаправленных поисков. Важные результаты получены за последнее время по диффузии и термодиффузии. И. Р. Кричевский, Н. Е. Хазанова и Л. Р. Линшиц [8] нашли чрезвычайно сильное уменьшение коэффициента диффузии в критической области расслаивающихся растворов. Аналогичное явление медленного установления равновесия имеет место и в однокомпонентных системах при рассасывании неоднородности плотности. Такая неоднородность (за вычетом эффекта гравитационного сжатия) получается при нагреве вещества выше критической температуры в запаянной ампуле. Многие исследователи наблюдали это явление. А. Г. Столетов охарактеризовал его как затрудненное приближение к равновесию. [c.117]

    Далее, при 925° реакция также протекает неравномерно по всему стержню. Это объяснить трудно, так как оценка критерия для чисто кинетической зоны показывает, что скорость реакции при этой температуре должна соответствовать зоне I. Это едва ли можно отнести за счет температурного градиента в стержне, так как расчеты переноса тепла показывают, что градиент в стержне пренебрежимо мал [85], для того чтобы доставить необходимое тепло реакции при такой низкой скорости реакции. Более того, так как тепло подводится к образцу извне, минимум температуры на некоторой промежуточной точке радиуса (для того чтобы объяснить минимальное значение скорости реакции на радиус 0,4 см) немыслим. Возможно, предположение о полной внутренней связи пор внутри углеродного стержня неправильно. Если газовый реагент доставляется во внутреннюю область углеродного стержня через большие и маленькие поры, которые не все связаны между собой, то неоднородный профиль пористости при 925° может определяться тем, что в маленьких порах системы реакция протекает в зоне И. В этом случае экспериментальное значение Йэфф> использованное для оценки зоны реакции, определялось бы почти целиком диффузией через систему больших пор и было бы значительно выше того значения, которое нужно было бы использовать для расчета температурной зоны системы малых пор. Если принять, что система пор, через которую проходит газ внутри стержня, ведет себя как система пор с эффективным диффузионным радиусом для всего распределения пор и при этом эффективный коэффициент диффузии для группы пор самых малых радиусов, через которые происходит диффузия, составляет, возможно, одну сотую от коэффициента диффузии для групп самых больших пор, то тогда неоднородная пористость при низких скоростях реакции легко объясняется. Большинство данных, приведенных ниже, необходимо было бы пересчитать, используя распределения поверхности и пористости с коэффициентами диффузии [c.78]

    Процесс конвективного массообмена в мантии регулируется действием сильных положительных и отрицательных обратных связей в системе. Примером положительных связей может служить зависимость скорости конвекции от теплогенерации с повышением температуры мантии экспоненциально уменьшается вязкость ее вещества и соответственно возрастает скорость химико-плотностной конвекции. Одновременно увеличивается скорость диффузии окислов железа из кристаллов силикатов в межгранулярные пространства и, следовательно, скорость перехода ядерного вещества в земное ядро, а это, в свою очередь, приводит к возрастанию плотностных неоднородностей в мантии и к новой активизации мантийного массообмена. [c.263]


Смотреть страницы где упоминается термин О диффузии в системах с неоднородной температурой: [c.350]    [c.136]    [c.384]    [c.384]    [c.139]    [c.117]   
Смотреть главы в:

Основы химической термодинамики -> О диффузии в системах с неоднородной температурой




ПОИСК





Смотрите так же термины и статьи:

Температура системы



© 2025 chem21.info Реклама на сайте