Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение электрохимической коррозии металлов

    Исследования показали, что скорость электрохимической коррозии зависит от потенциала корродирующего металла. О термодинамической неустойчивости металлов в водных растворах, т. е. о склонности их к коррозии, можно делать вполне определенные выводы, если сравнивать их электродные потенциалы с потенциалами окислителей, которые участвуют в процессе коррозии. Механические напряжения в металлических конструкциях и деталях также способствуют ускорению процессов коррозии за счет повышения активности металла. [c.274]


    Наиболее опасным видом электрохимической коррозии на установках каталитического риформинга и гидроочисткн является высокотемпературная газовая коррозия, возникающая в реакторных блоках при контакте металла с циркулирующими потоками, содержащими водород, углеводороды и сероводород. В определенных условиях водород взаимодействует с углеродом стали, и происходит обезуглероживание, снижающее пластические свойства стали. Этот вид коррозии принято называть водородной коррозией. Главная ее опасность заключается в растрескивании металла следовательно, при эксплуатации таких установок надо принимать меры по предупреждению коррозии. [c.199]

    Определение контролирующего процесса электрохимической коррозии металла имеет большое значение при изучении коррозионного процесса, так как для уменьшения скорости коррозии наиболее эффективным является, как правило, воздействие именно на контролирующий процесс (стадию). [c.279]

    Определение электрохимической коррозии металлов [c.24]

    Водородное охрупчивание можно считать вторичным процессом электрохимической коррозии металла котлов, протекающей с водородной деполяризацией кислотной, подщламовой, пароводяной и межкристаллитной (щелочной). При этом происходит накопление в стали водорода - его концентрацию, очевидно, можно считать косвенным показателем интенсивности протекания этих видов коррозии как в отдельности, так и в их сочетании. Поэтому определение концентрации его в металле весьма целесообразно для выяснения общего хода коррозии, протекающей в теплонапряженных местах поверхности нагрева с целью установления оптимальных (с точки зрения предупреждения коррозии) водно-химических и тепловых режимов. [c.79]

    Определение электрохимической коррозии металлов также не указывает на отличительные особенности этого процесса. Электрохимическая коррозия металла — это процесс взаимодействия металла с коррозионной средой (раствором электролита), при котором ионизация атомов металла и восстановление окислительного компонента коррозионной среды протекают не в одном акте, а их скорости зависят от электродного потенциала. [c.11]

    В большинстве случаев электрохимической коррозии металлов основными тормозящими явлениями, устанавливающими определенную конечную скорость ее, служат явления поляризации. [c.192]

    В условиях возможного наступления пассивности (в присутствии окислителя и при отсутствии депассиваторов) анодная поляризация металла от внешнего источника постоянного электрического тока (см. с. 321) может вызвать наступление пассивного состояния при достижении определенного значения эффективного потенциала металла и тем самым значительно снизить коррозию металла. Этот эффект также находит практическое использование в виде так называемой анодной электрохимической защиты. [c.365]


    При подготовке второго издания авторы приняли во внимание ряд замечании, высказанных относительно некоторых задач. Одновременно в значительной степени был расширен сам круг задач, подлежащих выполнению, — введены работы по электродиализу, проверке закона разведения Оствальда, определению буферной емкости. Существенной переработке подверглась гл. VH первого изда-ни5 , посвященная электрохимической кинетике, из которой отдельной главой выделены задачи по анодному растворению металлов и сплавов. Также была переработана и дополнена новыми работами глава по электрохимической коррозии металлов. [c.3]

    Возможность практического использования полученного соотношения для определения деформационного изменения тока коррозии обосновывается так же, как и в известном методе снятия реальных поляризационных кривых для определения скорости коррозии металла на основе кинетической теории коррозии идеальные поляризационные кривые, определяющие стационарный потенциал и ток коррозии, рассматриваются как продолжение тафелевских участков реальных поляризационных кривых. Это, очевидно, справедливо для электрохимически гомогенной поверхности, но также может быть принято для технических металлов (железа, никеля, свинца и др.), поскольку наблюдалось удовлетворительное совпадение результатов, полученных измерением скорости коррозии непосредственно по убыли массы и расчетом по поляризационным кривым [54]. На рис. 59 реальные поляризационные кривые показаны сплошными линиями. Для практического расчета скорости коррозии в формулу (232) следует подставлять величины сдвигов потенциалов, определенные сечением реальных анодных и катодных поляризационных кривых для произвольно выбранного значения плотности тока гальваностатической поляризации в пределах тафелевских участков. [c.166]

    Определение электрохимических характеристик металлов является одним из методов изучения механизма коррозии. [c.51]

    Различают химическую, биохимическую и электрохимическую коррозию металлов. Химическая коррозия металлов представляет собой их самопроизвольное разрушение, в основе которого лежат законы обычных гетерогенных химических реакций. Разрушение металлов под действием агрессивных газов при высоких температурах, исключающих конденсацию влаги на поверхности металла, а также, по-видимому, их растворение в условиях контакта с органическими средами, не проводящими тока, относятся к процессам химической коррозии. Биохимическая коррозия, или биокоррозия, вызывается жизнедеятельностью различных микроорганизмов или использующих металл как питательную среду, или выделяющих продукты, действующие разрушающе на металл. Биокоррозия обычно накладывается на другие виды коррозии. Для ее развития наиболее благоприятны почвы определенных составов, застойные воды и некоторые органические продукты. [c.458]

    Панасюк В.В. и др. Способ определения электрохимических параметров металла при щелевой коррозии. А.с. No 1469325 СССР. Бюлл. изобр. No 12, 1989. [c.36]

    Предложенное определение пассивности хорошо согласуется с наиболее рациональной трактовкой явления пассивности (в области электрохимической коррозии металлов) и позволяет провести приближенный, а при условии построения диаграмм коррозии также и более точный количественный расчет степени пассивности. [c.298]

    Исследование кинетики отдельных ступеней электрохимической коррозии металлов и установление характера контроля в различных условиях протекания процесса коррозии. Изучение механизма защитного действия различных антикоррозионных мероприятий путем определения степени торможения ими отдельных ступеней коррозионного процесса. Установление связи коррозионной стойкости металлов и сплавов с электронным строением атома, т. е. с местонахождением данных металлов в Менделеевской таблице. Электрохимическое изучение структурной коррозии сплавов. Приложение теории дислокаций в атомных решетках к явлениям электрохимической коррозии реальных металлов и сплавов. Исследование кинетики электрохимических процессов при наличии на поверхности корродирующего металла тонких полупроводящих окисных или высокополимерных пленок, или других тонких слоев (например, [c.581]

    До настоящего времени еще не удалось сформулировать такое определение понятия коррозия , которое было бы принято большинством коррозионистов и электрохимиков. Поэтому до разработки соответствующего ГОСТа приходится ограничиться лишь описанием того, что обычно понимается под коррозией металлов. Коррозия представляет собой переход атомов из кристаллической решетки металла в соединение с какими-либо компонентами среды. При этом уменьшается масса металла и изменяются (обычно ухудшаются) многие из его свойств, например его прочностные характеристики, происходит разрушение металла. Причинами, вызывающими коррозию металла, могут быть взаимодействие с компонентами среды (химическая или электрохимическая коррозия), попадание в металлоконструкции блуждающих токов и возникновение зон разрушения — анодных участков (электрокоррозия). Часто эти процессы накладываются друг на друга их протеканию может способствовать жизнедеятельность различных микроорганизмов (биокоррозия). [c.485]


    Одним из серьезных препятствий на пути изучения коррозионной агрессивности бензинов являлось отсутствие ускоренных количественных лабораторных методов. Описанные в литературе методы оценки коррозионной агрессивности носят качественный характер [1, 2] или слишком длительны, так как связаны с продолжительным хранением образцов [3—6 Вообще лабораторное хранение при определенной температуре как метод оценки коррозионных свойств топлив имеет существенный принципиальный недостаток. В этих условиях отсутствует перепад температур и связанная с ним конденсация влаги на поверхности соприкосновения топлива с металлом, что затрудняет появление электрохимической коррозии. [c.289]

    Влажность воздуха является одним из главных факторов, способствующих образованию на поверхности металла пленки влаги, что приводит к его электрохимической коррозии, скорость которой возрастает с увеличением относительной влажности воздуха (рис. 268). При этом в большинстве практических случаев (загрязненный воздух) скорость коррозии многих металлов резко увеличивается только по достижении некоторой определенной относительной влажности воздуха (называемой иногда критической влажностью), при которой появляется сплошная пленка влаги на корродирующей поверхности металла в результате конденсации воды за [c.377]

    Необходимым условием всякого электрохимического коррозионного процесса является неравенство Еа < Е%, т. е. различие потенциалов катодных и анодных процессов на поверхности металла. Основным условием возможности прохождения процесса коррозии металла с водородной деполяризацией с определенной скоростью является требование, чтобы электродный потенциал анода (металла) был более отрицателен, чем потенциал разряда водородных иоиов с этой скоростью при данных условиях. [c.42]

    Если в масле имеется вода, содержащиеся в нем коррозионно-активные вещества (органические кислоты, сернистые соединения и т. п.) диссоциируют в водном растворе на ионы, и тогда коррозия носит электрохимический характер. Электрохимическая коррозия, в отличие от химической, протекает в виде двух одновременных самостоятельных процессов — анодного и катодного, каждый 3 которых локализуется на определенных участках металла, контактирующего с маслом. Электрохимическая коррозия особенно интенсивна, когда обводненное масло контактирует с металлами, имеющими разный электрохимический потенциал, однако даже у одного металла всегда имеются химически неодно родные участки с различными потенциалами между ними при взаимодействии с электролитом и возникает гальванический ток. Разрушение металла при электрохимической коррозии происходит только на анодных участках, причем количество прокорродировавшего металла (Зм (в г) можйо определить из выражения [8]  [c.15]

    Хотя светлые нефтепродукты и масла обладают определенной коррозионной агрессивностью, возникающая в результате взаимодействия нефтепродуктов с металлами химическая коррозия незначительна по сравнению с электрохимической коррозией, однако ее необходимо учитывать при рассмотрении коррозионных процессов, развивающихся на внутренней поверхности резервуаров, цистерн, тары и трубопроводов. [c.24]

    Некоторые металлы и сплавы — титан, алюминий, коррозионно-стойкие (нержавеющие) стали — в определенных условиях не подвергаются электрохимической коррозии вследствие так называемой пассивности. Пассивность — явление сложное, природа его до конца не изучена, но появление пассивности связано с образованием на поверхности металла адсорбционных слоев или пленок. [c.7]

    Анодная защита внешним током — защита металла от коррозии с помощью постоянного электрического тока от внешнего источника, при которой защищаемый металл присоединяют к положительному полюсу внешнего источника постоянного тока (т. е. в качестве анода), а к отрицательному полюсу присоединяют дополнительный электрод, поляризуемый катодно. При таком пропускании тока поверхность защищаемого металла поляризуется анодно ее потенциал при этом смещается в положительную сторону, что обычно приводит к увеличению электрохимического растворения металла однако при достижении определенного значения потенциала может наступить пассивное состояние металла (что наблюдается при отсутствии депассиваторов в коррозионной среде и приводит к значительному снижению скорости электрохимической коррозии металла), для длительного сохранения которого требуется незначительная плотность анодного тока. На дополнительном электроде — катоде при этом протекает преимущественно катодный процесс. При больших плотностях анодного тока возможно достижение значений потенциала, при которых наступает явление перепассивации (транспассивности)— растворение металла с переходом в раствор ионов высшей валентности, в результате чего образуются растворимые или неустойчивые соединения (л<елезо и хром образуют ионы Ре04 и СГО4 , в которых Ре и Сг шестивалентны), что приводит к нарушению пассивного состояния и увеличению скорости растворения металла. Анодная защита металлических конструкций от коррозии уже нашла применение в химической, бумажной и других отраслях промышленности. [c.242]

    Можно предположить, что к такому же выводу пришли и некоторые зарубежные исследователи, поскольку проводимые за последнее время основные исследования по методике определения межкристаллитной коррозии металла сводятся к ускорению определения этого вида разрушения при кипячении образцов металла в растворе uS04-f H2SO4. Так, например, в определенных случаях предлагается вводить в раствор сернокислый гидразин, цинковую пыль и медную стружку. Разработке ускоренного метода определения путем введения в раствор медной стружки предшествовали значительные теоретические исследования кинетики и электрохимических закономерностей процесса [2]. [c.4]

    Таким образом, о принципиальной возможности электрохимической коррозии металла в данных условиях определенное заключение может быть сделано на основании сравнения, электрохимического потенциаша металла и потенциала возможного катодного процесса. Сравнивая потенциал вероятной катодной реакции (см. табл. 10) с потенциалом растворения металлов (см. табл. 9), можно определить, при каких катодных процессах теоретически возможно протекание электрохимического растворения данного металла. [c.146]

    Этот метод может быть использован для определения тока саморастворения (коррозии) металла и установления механизма процесса коррозии металла совпадение величины рассчитанного таким методом коррозионного тока /э = х со значением /опытн. полученным непосредственным определением коррозионных потерь металла (I из Ат), подтверждает электрохимический механизм процесса расхождение этих значений, когда /э = х < /опыта указывает на наличие растворения металла по неэлектрохимическому, т. е. химическому механизму. [c.286]

    Характерными свойствами коррозионно-активных грунтов являются хорошая воздухопроницаемость, высокая кислотность, хорошая электропроводность и достаточная влажность. Влажность является сущестпениым фактором грунтовой коррозии металлов. Для того чтобы электрохимический коррозионный процесс мог протекать беспрелятстпеиио, необходим определенный минимум воды. Если грунт [c.186]

    Метод определения коррозионной активности в условиях конденсации воды (ГОСТ 18597—73). Метод фактически характеризует защитные свойства бензина, т.е. степень уменьшения скорости электрохимической коррозии в системе топливо-металл-электролит. Сущность метода заключается в определении потери массы стальной пластинки (Ст.З), находящейся в бензине в течение 4 ч при насыщении бензина водой и ее конденсации на пластинке. Коррозионная активность бензинов в условиях конденсации воды определяется на приборе Е. С. Чуршукова (рис. 13.14). [c.405]

    Определение влияния на силу тока коррозионного элемента соотношения площадей анодной и катодной зон представляет простой и удобный в экспериментальном отношеггии способ проверки электрохимического механизма коррозии металлов в растворах электролитов. Характер такого влияния может быть количественно выражен, исходя из основных положений кинетики электрохимических процессов, протекающих на аноде и катоде коррозионного элемента при его работе. Наобходимо, однако, сделать определенные допущения относительно конкретных условий работы коррозионного элемента. Если, в частности, полностью исключить диффузионные ограничения, то для металлов с небольшим током обмена по собственным ионам общее условие стационарности определяется формулой (9.6), в которое входит величина анодной зоны поверхности и катодной зоны 5 . Для последу ющего целесообразно принять за единицу сумму поверхности анодной и катодной зон, положив, что = Вд, 5 = 6 , и что 0 + 0 , = 1. При этом Вд и В соответственно будут иметь смысл безразмерной величины доли поверхности анода и катода. Примем во внимание, что [c.255]

    Ряд расчетов, связанных с конкретным применением вращающегося диска с кольцом, был выполнен Брунен-стайном и Олбери с сотрудниками. Метод предназначен для изучения многостадийных процессов (сопровождающихся образованием нестойких промежуточных продуктов) и химических (объемных) превращений продуктов электродных реакций, для определения кинетики растворения металла по накоплению продуктов ионизации или коррозии, а также при изучении процессов адсорбции, сопровождающих электрохимические реакции. Хорошо известно, например, что промежуточные продукты электродных процессов весьма часто бывает затруднительно накопить в растворе даже при длительном электролизе. В то же время обнаружение и установление природы таких промежуточных частиц, претерпевающих на своем пути изменения, разлагающихся или вступающих в какие-либо реакции, представляет собой реальную возможность установить стадию электродного процесса, в том числе и стадию, лимитирую- [c.76]

    Может показаться, что на эквивалентную величину должна уменьшиться и скорость растворения металла. Однако в общем случае это неверно. Хотя при самопроизвольной электрохимической коррозии катодный и анодный процессы тесно связаны между собой и идут один за счет другого, но они все же в значительной мере самостоятельны. Скорость каждого из них является вполне определенной функцией потенциала и при принудительной поляризации извне обе эти функциональные зависимости должны проявляться. Уменьшение коррозии металла в п раз требует наложения на него катодного тока, в п раз превышающего ток самопроизвольного растворения. Поэтому в условиях активного растворения, когда катодный процесс лимитируется актом разряда (например, при водородной деполяризации), наложенный катодный ток, соизмеримый с током самопроиз- [c.477]

    Основная причина почвенной коррозии — наличие воды. Даже при минимальной влажности почва становится ионным проводником электрического тока, т.е. представляет собой электролит. К почвенной коррозии применимы основные закономерности электрохимической коррозии, справедливые для жидких электролитов. Однако электрохимический характер почвенной коррозии имеет особенности, отличающие ее от коррозии при погружении металла в электролит или от коррозии под пленкой влаги. Это связано с тем, что почва имеет сложное строение и представляет собой гетерогенную капиллярно-пористую систему. Почвы обладают водопроницаемостью и капиллярным водоперемещением, они накапливают и удерживают тепло и вместе с тем снижают испаряемость влаги. Если вода находится в порах или в виде поверхностных пленок на стенках пор, то ее связь с почвой имеет физико-механический характер. При этом влага удерживается в почве в неопределенных соотношениях. Другой вид связи — физико-химическая, при которой возникают коллоидные образования почвы. Возможна также химическая связь, которая характеризуется строго определенным молекулярным соотношением компонентов, например при образовании гидратированных химических соединений. [c.41]

    Условие развития электрохимической коррозии — это контакт металла с электролитом, роль которого выполняет пластовая вода, содержащая определенное количество примесей и представляет собой сложные многокомпонентные системы. В пластовых водах нефтяных месторождений содержатся вещества, находящиеся в истинно растворенном состоянии газообразные вещества, растворенные в воде (углеводородные и сернистые газы, азот) вещества, находящиеся в воде в коллоидно-растворенном состоянии (двуокись кремния, гидрат окислов железэ и алюминия). Основные компоненты, растворенные в воде.— это хлориды, суль- [c.124]


Смотреть страницы где упоминается термин Определение электрохимической коррозии металлов: [c.29]    [c.168]    [c.44]    [c.52]    [c.126]    [c.245]    [c.487]    [c.190]    [c.20]    [c.425]   
Смотреть главы в:

Химическое сопротивление материалов и современные проблемы защиты от коррозии -> Определение электрохимической коррозии металлов




ПОИСК





Смотрите так же термины и статьи:

Коррозия металлов

Коррозия металлов коррозии

Коррозия металлов, электрохимическая

Коррозия электрохимическая

Коррозия, определение

Электрохимический ряд металлов



© 2025 chem21.info Реклама на сайте