Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Физические свойства полимеров олефинов

    ФИЗИЧЕСКИЕ СВОЙСТВА ПОЛИМЕРОВ ОЛЕФИНОВ [c.342]

    Физические свойства полимеров олефинов [c.343]

    К этой группе пленкообразующих относятся карбоцепные полимеры полиэтилен, полипропилен, галогенсодержащие иоли-олефины (например, поливинилхлорид, политетрафторэтилен, перхлорвинил и т. п.), полиакрилаты, каучуки, полимеры винилацетата и продукты их полимераналогичных превращений, инден-кумароновые олигомеры и некоторые другие. Эти полимеры находят широкое применение в различных отраслях народного хозяйства благодаря ценному комплексу физических и химических свойств. Многие из них (полиэтилен, полипропилен, каучуки, инден-кумароновые олигомеры, нефтеполимерные смолы, поливинилхлорид) получают на основе широко доступного дешевого сырья, что обусловливает возможность организации их многотоннажного производства. [c.319]


    Полимеризацией простых молекул человек и природа создают вещества, приносящие большую пользу. Натуральные и синтетические масла, пластики и волокна — вот те несколько видов полимеров, с какими мы знакомы. Катализ — ключ к процессу полимеризации, позволяющий контролировать как тип, так и качество многих полимеров, получаемых из одних и тех же исходных химических структурных элементов. Новые полезные физические свойства полимеров обеспечивают неизменный интерес к их созданию. В настоящей главе речь идет о полимеризации газообразных олефинов в жидкие продукты, используемые главным образом в качестве топлив. Здесь же рассматриваются процессы полимеризации, проводимые с целью улучшения физических свойств исходных продуктов. Газообразные олефины, хранение и транспорт которых осложнены, превращаются в легко испаряющиеся жидкие продукты удобные для хранения и используемые в качестве топлив для двигателей внутреннего сгорания. При этом ни теплота сгорания, пи октановые числа этих топлив не улучшались. [c.322]

    До середины 1950-х гг. все попытки получить полиолефины из иных мономеров, чем этилен и изобутилен, приводили к образованию лишь низкомолекулярных продуктов, промышленная ценность которых невелика. Причиной этих неудач является протекание реакций переноса активного центра (путем отрыва атома водорода от олефина), конкурирующих с реакциями роста цепи путем присоединения радикала. Однако в 1954 г. Натта, продолжая исследования Циглера, обнаружил, что некоторые биметаллические катализаторы циглеровского типа способны превращать пропилен и многие другие а-олефины, в частности 4-метилпентен-1 и бутен-1, в кристаллические полимеры. Путем небольших изменений состава и физической природы катализаторов этому ученому удалось получить несколько видов высокомолекулярного полипропилена, значительно различающихся по свойствам. При дальнейшем изучении было установлено, что эти свойства обусловлены различной стереорегулярностью полученных продуктов (см. выше). Изотактический полипропилен оказался похожим во многих отношениях на полиэтилен высокой плотности, тогда как атактическая форма полипропилена характеризовалась аморфной структурой и низкими прочностными характеристиками. Метильные группы, связанные с альтернантными атомами углерода основной цепи, оказывают разностороннее влияние на свойства полимера. Так, с одной стороны, они увеличивают жесткость макромолекуляр- [c.256]


    ТО у карбоцепных полимеров на основе олефинов с большим числом атомов углерода их очень много. Огромная макромолекула полимера может быть линейной и разветвленной, т. е. иметь боковые ответвления ( ветви ) от основной цепи. Ветви могут быть короткими и соизмеримыми с длиной основной цепи, присоединяться к ней по одной в нескольких узлах ветвления (гребнеобразные полимеры) или исходить из одного узла, придавая макромолекуле форму звезды. Схематически форма макромолекул представлена на рис. I. 1. При одинаковом химическом составе к молекулярной массе полимера названные выше структуры являются изомерами, которые определяют существенные различия в физических и механических свойствах полимеров. [c.12]

    Из полученных твердых полимеров различных олефинов на окиснохромовом катализаторе наиболее полно охарактеризован полиэтилен, выпускаемый в США под марками марлекс-50, марлекс-20 и т. д. В литературе указывается, что марлекс имеет ряд ценных свойств, отличных от свойств полиэтилена высокого давления. Он обладает повышенной теплостойкостью и водонепроницаемостью, стойкостью к резким колебаниям температуры от —115 до +120°. В табл. 3 приводятся физические свойства марлекс-50 в сравнении со свойствами других твердых полимеров [40]. [c.29]

    Этилен для производства полиэтилена должеп быть исключительно чистым в нем не должны находиться его гомологи и ацетилен, которые отрицательно влияют па свойства полимера. Для отделения этилена от остальных углеводородов и для его очистки был предложен целый ряд физических и химических способов. Все эти способы основаны как на различной растворимости олефинов и других ненасыщенных углеводородов в определенных растворителях, так и на их высокой реакционной способности. Из физических методов рекомендуются следующие экстракция селективными растворителями [171, 172], адсорбция веществалга, обладающими большой поверхностью, чаще всего активированным углем [173, 174[, и наконец низкотемпературная фракционированная дистилляция газообразного или сжиженного продукта при повышенном [175, 175а], атмосферном или пониженном давлении [176]. К химическим способам разделения и очистки олефинов относится абсорбция разбавленной серной кислотой [177], реагирующей с гомологами этилеиа, диолефинами и ароматическими углеводородалги обычно быстрее, нежели с этиленом. К этим способам относится так же абсорбция другими химическими реагентами, например аммиачным раствором хлористой меди, с которой этилен образует комплексное соединение, быстро разлагающееся при повышенной температуре, пониженном давлении или нри комбинации обоих условий [169, 178] (см. стр. 94). [c.43]

    Различие между полимеризацией этилена и полимеризацией других а-олефинов заключается в возможности придания структурной регулярности поли-а-олефинам. Поэтому катализатор Циглера может быть одинаково эффективен при полимеризации этилена и высших а-олефинов, не являясь при этом лучшим катализатором для получения высоких выходов изотактических полимеров. Природа компонентов, их соотношение, способ приготовления и физическое состояние катализатора оказывают существенное влияние на свойства образующегося полимера. Например, при полимеризации этилена соотношение компонентов и условия реакции определяют молекулярный вес полимера. Оба эти фактора наряду с молекулярным весом полимера и физическим состоянием катализатора определяют степень кристалличности полимера и относительные выходы изотактического и атактического продуктов. От соотношения компонентов катализатора при полимеризации сопряженных диенов зависит получение [c.104]

    Книга представляет собой монографию по синтезу и свойствам стереорегулярных полимеров, в которой собран и систематизирован обширный материал по линейной и стереорегулярной полимеризации и сополимеризации этиленовых и ацетиленовых углеводородов, виниловых соединений, в том числе виниловых эфиров и акрилатов, и окисей олефинов. Приведен краткий обзор теории радикальной и ионной полимеризаций и подробно рассмотрены вопросы каталитической полимеризации и механизм таких реакций, в том числе на гетерогенных катализаторах Циглера — Натта. Особое внимание уделено способам получения и свойствам катализаторов для стереорегулярной полимеризации. Рассматриваются также вопросы очистки полимеров, их физические и механические свойства. В книге содержится обширная библиография. [c.127]

    В зависимости от условий проведения процесса полимеризации олефинов получаются полимеры с различной физической структурой, которая оказывает влияние на свойства полиолефинов и волокон. Ниже рассматриваются физические и физикомеханические свойства полиолефинов. [c.37]

    Заметное влияние введения электроотрицательных групп на склонность ненасыщенных углеводородов к полимеризации можно иллюстрировать на примере стирола. Реакции полимеризации ненасьш енных арилзамещенных углеводородов, в особенности стирола СсНоСН СН , интересны как относительной легкостью полимеризации, так и смолообразным характером многих получаемых полимеров. Поведение арилзамещенных олефинов во всем весьма сходно с поведением простых диолефиновых углеводородов с сопряженной двойной связью Полистирол являющийся продуктом полимеризации стирола под влияние,м нагревания, катализаторов или свста, представляет собой прозрачное стеклообразное вещество с высоки м молекулярным весом, нерастворимое в воде, спирте и нефтяных углеводо1Х>дах. Он растворяется в бензольных углеводородах, хлорированных углеводородах и в сложных эфирах. Физические свойства по.тастирола таковы, что делают его чрезвычайно ценным пластически.м продуктом. С развитием методов получения стирола, например пиролизом этилбензола, приготовляемого конденсацией этил ена с бензолом полистирол без сомнения при.об >е-тет огромное техническое значение [c.670]


    В различных разделах настоящей монографии приводятся данные по термическим и механическим свойствам линейных полиэтиленов и стереорегулярных полимеров олефинов. Эти данные приводятся везде, где указанные свойства служат для характеристики рассматриваемого материала и позволяют отличить его от разветвленных, или атактических, типов полимеров. Тем не менее представлялось желательным собрать в настоящей главе имеющиеся данные по физическим свойствам линейных полиэтиленов, стереорегулярных полиолефинов, полимеров диолефинов и родственных им веществ вместе с соответствующими данными для нормальных полиэтиленов и других сравнительно хорошо известных и нашедших широкое применение в технике материалов с целью облегчить х ритическое сопоставление и показать области, в которых можно ожидать успешного промышленного использования новых продуктов. [c.342]

    Синтез политетрафторэтилена (тефлона), который по химической и термической стабильности является лучшим из известных полимеризационных пластиков, привел к постоянно расширяюш,имся поискам других фторированных полимеров, обладаюш,их такими же замечательными химическими и физическими свойствами. Не удивительно поэтому, что многие исследования были направлены на синтез и изучение полимеризации других этиленовых мономеров, содержащих разное число атомов фтора, а именно винилфторида, винилиденфторида, трифторэтилена и хлортрифторэтилена. Значительное число работ было посвящено также изучению сополимеризации ТФЭ с другими фтор олефинами. [c.34]

    Еш с сотрудниками исследовал структуру и физические свойства пленок, полученных в тлеющем разряде из ряда углеводородов flзJ И ароматических соединений [142. Пленки осаждали на алюминии или на металлизированной пластиковой подложке в электродном разряде с частотой тока 20 КГЦ. В качестве объектов исследования бьши выбраны пентан (насыщенные углеводороды), этилен (оле-финовые), бутадиен (сопряженные олефины) и бензол, нафталин (ароматические соединения). Установлено, что пентан, этилен и бутадиен образуют пленки, содержащие в своем составе СН- и СН -группы, а также некоторое количество ненасьш1енных двоюшх связей. Ароматические колыш при полимеризации не образуются, они только сохраняются в продуктах, полученных из ароматических соединений. Хотя полимеры, полученные из пентана, этилена и бутадиена, по своему структурному составу близки, все же между ними существуют малые, но вполне воспроизводимые изменения в зависимости от состава исходного соединения. [c.6]

    После того как определены требования, предъявляемые к физическим свойства неподвижной жидкости, следует подобрать жидкость с хорошими коэффициентами разделения анализируемых веществ. Обычно достаточна величина а, равная примерно 1,1 или выше. Степень разделения зависит от эффективности колонки, выраженной числом тарелок. Для разделения соединений с одинаковой. полярностью и различными точками кипения лучше подходит неполярная фаза. Наиболее часто употребляемыми жидкостями такого рода являются сквалан, апиезоновые смазки, силиконовое масло и эфиры высокомолекулярных спиртов и двуосновных кислот. Для разделения веществ с различной полярностью, т. е. отличающихся друг от друга по степени ненасыщенности и степени ароматизации, следует применять полярную жидкость, например полиэтиленгликоли, полимеры сложных эфиров, получаемые из двуосновных кислот с короткими цепями и двухатомных спиртов, простые и сложные эфиры углеводов и производные эти лен диаминов. Иногда для разделения близких по свойствам олефинов используют сильно полярные жидкости, например растворы нитрата серебра в этиленгликоле. Часто можно получить хорошее разделение, когда растворитель способен образовывать дополнительные валентные связи с одним или несколькими растворенными веществами. В некоторых случаях лучшее разделение достигается на двух последоватадьно соединенных колонках, заполненных различными неподвижными фазами, чем на любой одной из этих колонок. Близкие результаты получают иногда при смешении этих двух жидкостей и применении одной колонки. [c.40]

    Реакция сополимеризации. Важным направлением процесса полимеризации олефинов является реакция, при которой два или несколько олефинов или мономеров полимеризуются в смеси одновременно. Образующийся при этом продукт, содержащий структурные единицы двух или нескольких мономеров, известен под названием сополимера, а процесс получения такого продукта называется сополимеризацией. Такая реакция имеет большое теоретическое и практическое значение. В технике она дала возможность значительно увеличить число существующих полимеров. Так, например, из п мономеров теоретически может образоваться и /2 различных двухкомпонентных сополимеров, причем состав каждого из них может изменяться в определенных пределах. Кроме того, хотя некоторые пары мономеров не удается заставить сополимеризоваться, однако имеются и такие олефины, которые не полимеризуются каждый в отдельности, но легко образуют сополимеры. Реакция сополимеризации, таким образом, дает возможность получать полимеры с варьирующими в широких пределах физическими и химическими свойствами. При тщательном регулировании соотношения компонентов в сополимерных системах можно довольно тонко управлять этими свойствами, приспосабливая их для специальных целей, В результате многие из наиболее важных промышленных полимеров практически являются сополимерами, содержащими (обычио) два типа мономерных структурных единиц. Пе-( ечень некоторых из них приведен в табл. 7. [c.137]

    Стереорегулярные полимеры впервые были синтезированы в 1955 г. итальянским ученым Дж. Натта. Они получаются из а-замещенных олефинов и диолефинов. Благодаря строго линейной форме и высокой симметрии макромолекул стереорегулярные поли.меры хорошо кристаллизуются. Их физические и физико-механические свойства выто дно отличаются от свойств нестереорегулярных (атактических) полимеров, [c.76]

    Известны и подробно описаны [93, 94] такие классы гетероцепных серусодержащих полимеров, как полисульфоны, полисульфиды, полиэфиры, полиамиды и др. В последнее время появились обзоры [4, 5], в которых подробно рассмотрены механизм образования иолисульфонов, условия сополимеризации двуокиси серы с различными олефинами [95—105], применяемые инициаторы [95, 99, 102—105], а также радиохимическое [95, 97, 100] и фотохимическое [98, 101, 106] инициирование и т. п. Рассмотрены свойства иолисульфонов и результаты их исследования методом инфракрасной спектроскопии и другими физическими методами [98, 101—103, 105—108]. Показаны возможные области использования иолисульфонов и методы их стабилизации [96, 99]. [c.183]

    Различие между полимеризацией этилена и полимеризацией других а-олефинов заключается в возможности придания структурной регулярности ноли-а-олефинам. Поэтому катализатор Циглера может быть одинаково эффективен при нолимеризации этилена и высших а-олефинов, не являясь при этом лучшим катализатором для получения высоких выходов изотактических полимеров. Природа компонентов, их соотношение, способ приготовления и физическое состояние катализатора оказывают существенное влияние на свойства образующегося полимера. Например, при полил1еризации этилена соотношение компонентов и условия реакции определяют молекулярный вес полимера. Оба эти фактора наряду с молекулярным весом полимера и физическим состоянием катализатора определяют степень кристалличности полимера и относительные выходы изотактического и атактического продуктов. От соотношения комнонептов катализатора при полимеризации сопряженных диенов зависит получение , Агцис- или 1,4- гранс-конфигурации звеньев в полимере, в то время как природа компонентов определяет наличие внутренней или боковой ненасыщенности, т. е. наличие 1,4- или 1,2-звеньев мономера. Влияние катали- [c.104]


Смотреть страницы где упоминается термин Физические свойства полимеров олефинов: [c.12]    [c.176]    [c.473]    [c.189]    [c.301]    [c.648]    [c.125]   
Смотреть главы в:

Линейные и стереорегулярные полимеры -> Физические свойства полимеров олефинов

Линейные и стереорегулярные полимеры -> Физические свойства полимеров олефинов




ПОИСК





Смотрите так же термины и статьи:

Олефины полимеры

Полимеры физические



© 2024 chem21.info Реклама на сайте