Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химические свойства и анализ

    Методы анализа газов основаны на их физических, химических и физико-химических свойствах. На физических свойствах газов основано определение одного или двух компонентов газовой смеси, на химических и физико-химических свойствах— анализ сложных газовых смесей. Химический анализ газов основан на взаимодействии отдельных компонентов газовой смеси с реактивами. Например, для определения СОг в газовой смеси (если содержание его не превышает 1 %) ее пропускают через раствор Ва(ОН)г, где происходит поглощение диоксида углерода  [c.46]


    Применяются общие и специальные методы анализа нефтепродуктов. Первые служат для определения физико-химических свойств, нормируемых для большинства товарных нефтепродуктов, например, содержание воды, золы, механических примесей, кислотность и т. д. [c.150]

    ВВЕДЕНИЕ в АНАЛИЗ ХИМИЧЕСКОЙ КОНЦЕПЦИИ — ОПРЕДЕЛЕНИЕ ФИЗИКО-ХИМИЧЕСКИХ СВОЙСТВ РЕАГЕНТОВ [c.63]

    Существующие лабораторные методы исследования нефтяных остатков позволяют определять групповой химический состав нефтепродукта. Идентифицировать же индивидуальные углеводороды в нефтяных фракциях очень сложно, а иногда невозможно ввиду их многообразия [2.1]. При разделении и исследовании наиболее тяжелой части нефти возрастает значение физических и физико-химических методов анализа, которые позволяют изучать ее природу и свойства, не вызывая существенных химических изменений в объектах исследования. [c.34]

    Содержание адсорбированной и химически связанной воды в катализаторах может меняться в широких пределах. Это зависит от структуры и химических свойств катализаторов, от условий их получения, хранения и эксплуатации, от влажности окружающей среды и т. п. Поэтому при анализе катализаторов приходится учитывать их влажность и отдельные показатели качества относить к массе сухой или прокаленной навески. [c.50]

    Технические условия на основные нефтепродукты складывались исторически и представляют собой набор физико-химических показателей качества и нескольких основных показателей наиболее важных эксплуатационных свойств. Анализ качества нефтепродукта на соответствие техническим условиям приходится делать довольно часто и во многих организациях (на нефтеперерабатывающих предприятиях, на складах и нефтебазах, в лабораториях потребителей и т.п.). Время на проведение анализа, как правило, ограничено сложное дорогостоящее оборудование может быть использовано далеко не во всех лабораториях. Все эти обстоятельства заставляют очень строго подходить к отбору показателей для включения их в технические условия на нефтепродукты. Естественно, все методы оценки [c.18]

    Неформальное общение осуществляется преимущественно в пределах одного коллектива исследователей, знакомство же с взглядами прочих групп, в особенности, если речь идет о группах зарубежных, происходит, как правило, по публикациям или официальным выступлениям. Поэтому, вероятно, до появления работ 1950 г. слова конформация и констелляция использовались, соответственно, в англо- и немецкоязычных группах независимо. После этих публикаций названные термины стали широко использоваться в печатных работах, и уже к середине 1950-х гг. оформились принципы конформационного анализа, главным из которых является связь физиче ских и химических свойств соединения с предпочти- [c.128]


    Выбор типа фильтра производится на основе предварительного анализа физико-химических свойств разделяемой суспензии и образующегося осадка, технологических требований, предъявляемых к процессу разделения, н экономических факторов. [c.83]

    Анализ большого статистического материала показывает, что дисульфиды в нефтях и нефтепродуктах содержатся в очень незначительных количествах, а в ряде нефтей они вообще не обнаружены. По химическим свойствам дисульфиды близки к тиоэфирам, однако, они значительно более [c.9]

    Так, использование спектрального или химического анализов смазочных материалов, отбираемых из двигателей и гидросистем работающей техники, позволяет определить физико-химические свойства масла вязкость, температуру вспышки, содержание присадок и нерастворимых осадков, моющие свойства и концентрацию продуктов износа и примесей, поступающих в систему смазки. На основании этих данных определяются неисправности, влияющие на расход топлива и масел. [c.172]

    Коэффициенты молекулярной диффузии для неэлектролитов и электролитов. Экспериментальное определение коэффициента основано на анализе концентраций растворенного вещества в различных слоях жидкой системы, вероятно, оптическими методами [13, 115, 122]. Для ряда веществ в литературе имеются числовые данные [49]. Кроме того, эти коэффициенты можно вычислить, основываясь на физико-химических свойствах веществ. Для неэлектролитов в разбавленных растворах и растворителей Арнольд [3] дал формулу, подобную формуле для газов  [c.44]

    Группа анализа и контроля качества химических реагентов определяет физико-химические свойства химических реагентов при их поступлении (достоверность паспортных данных заводов-поставщиков), хранении и потреблении в опытных и опытно-промыщленных работах. Приготовление компаундов реагентов для технологических целей также проводят под контролем этой группы. На приготовленный продукт цеху-потребителю выдают паспорт. Группа контролирует свойства химических веществ на всех этапах и объектах химизации. [c.268]

    Перерабатываемые материалы представляют собой гетерогенные системы со сложной структурой. При анализе структурных свойств часто образуется прочный круг чтобы изучить структуру надо изучить процессы в ней, а для изучения процессов необходимы знания структур [ ] Для рассматриваемого круга задач интенсификации эта коллизия становится еще более обостренной. Для оценок реакции системы на воздействия или, напротив, указания воздействия, которое бы вызвало необходимую реакцию (процесс), знание соответствующих физико-химических свойств становится обязательным условием. Поэтому последовательность исследования неизбежно должна включать в себя анализ структуры, по результатам которого в дальнейшем анализируются свойства системы, а затем анализируется влияние физических воздействий на процесс в этой структуре. [c.20]

    Важнейшим требованием к алгоритму расчета физико-химических свойств является анализ распространения погрешностей в ходе расчета. Следует отметить, что стремление использовать БД в различных приложениях автоматизированного проектирования ХТС значительно расширяет круг необходимых физико-химических свойств и поэтому задача определения такого круга, несложная для одного конкретного приложения [29, 34], становится весьма трудоемкой для отраслевого БД. [c.228]

    Эффективность алгоритма поиска на основе эвристической функции определяется не только самим свойством этой функции и стратегией выбора направления, но и тем, что при поиске учитываются ограничения, выявленные на этапе анализа физико-химических свойств, а также наличием верхнего граничного значения критерия, полученного на предварительном этапе синтеза с использованием матрицы тепловых объединений. [c.495]

    Анализ физико-химических свойств компонентов и смесей. [c.511]

    Так как легколетучая и тяжелая фракции рассматриваются независимо, имеются возможности рекуперации тепла между составляющими этих фракций. Анализ матрицы тепловых взаимодействий позволяет установить, что источниками тепла в технологических схемах с учетом ограничений, установленных на этапе исследования физико-химических свойств, могут рассматриваться потоки кротонового альдегида и уксусной кислоты, которые могут обмениваться с кубовыми продуктами следующим образом (табл. 8.17). [c.513]

    Уровень автоматизированного моделирования содержит пять подуровней библиотеку моделирующих блоков, библиотеку физико-химических свойств, подпрограммы ввода-вывода и анализа информации, блок Итерация , блок Последовательность . [c.591]

    В предлагаемой книге авторы попытались систематизировать вопросы создания систем как качественно нового подхода к использованию вычислительной техники. Книга посвящена комплексному рассмотрению проблемы построения таких систем для анализа и синтеза химико-технологических процессов, изложению методологического подхода — от формулирования проблемы, разработки математического описания отдельных процессов до выбора средств вычислительной техники и языков программирования. Рассмотрены вопросы создания пакетов прикладных программ, техническое и системное математическое обеспечение Единой Системы электронных вычислительных машин (ЕС ЭВМ). Приведено математическое описание и структура систем для решения задач анализа физико-химических свойств веществ и расчета типовых процессов химической технологии. [c.5]


    Генерация схем производится с учетом выявленных ранее ограничений и оценок. Этапы, предшествующие непосредственно синтезу оптимальной схемы, позволяют сформировать список компонентов с учетом образования азеотропных смесей в процессе деления, добавления разделяющих агентов или избытка отдельных компонентов для обеспечения или исключения азеотропных условий, т. е. формализовать в некоторой степени этап синтеза, основанный на опыте и интуиции проектировщика. Список формируется также с учетом оригинальных разработок для разделения отдельных компонентов смеси и их физико-химических свойств. В результате этого выявляется стратегия целенаправленного поиска оптимальной схемы. Заметим, что список компонентов может отличаться от исходного питания по количеству, составу, числу компонентов. Непосредственно генерация вариантов схем заключается в анализе списка компонентов, выборе сечений и оценке получаемых схем, в том числе с учетом рекуперации тепла. Поскольку список компонентов формируется исходя из реальных условий протекания процесса (например, фазовое равновесие), математические модели должны воспроизводить эти условия. Однако если разделяемая смесь не содержит сильно неидеальные системы, то расчет можно проводить и по упрощенным методикам, поскольку такие системы чаще всего многовариантные. На рис. 2.10 схематически приведена взаимосвязь этапов синтеза. [c.142]

    Анализ физико-химических свойств. Список компонентов и продуктовых фракций, сформированный на основе исходных данных может измениться, если присутствуют азеотропные смеси. [c.142]

    В последние годы начинает развиваться и химия полупроводников. В частности, это проявляется в разработке новых методов получения и анализа индивидуальных веществ исключительно высокой степени чистоты и правильной кристаллической структуры, что необходимо для получения некоторых полупроводниковых материалов с заданными свойствами. Кроме того, за последние годы отчетливо выявилось, что внутренняя структура, характерная для полупроводников, определяет также и химические свойства некоторых соединений, в частности свойства некоторых катализаторов окислительно-восстановительных реакций. [c.145]

    Физико-химический анализ представляет собой такой способ изучения физико-химических свойств различных систем, при котором исследуются зависимости между свойствами системы, ее составом и условиями существования. Изучение этих зависимостей дает возможность выяснить особенности внутреннего состояния системы, происходящие в ней изменения, образование тех или иных соединений и пр. [c.297]

    Из изложенных выше закономерностей катализа и анализа ф лзкко — химических свойств катализаторов и сырья крекинга можно кс-нстатировать, что  [c.116]

    Щелочность и кислотность масел alkalinity, a idity). Очищенное минеральное масло, как правило, является химически нейтральным. Для нейтрализации кислот, образующихся во время работы при сгорании сернистого дизельного топлива или окисления углеводородных молекул масла, в моторные и трансмиссионные масла добавляют щелочные присадки. Обычно эту задачу выполняют моющие и диспергирующие присадки - детергенты (поверхностно-активные вещества). Чем больще щелочность масла, тем больще его рабочий ресурс. Поэтому для моторных и трансмиссионных масел в качестве эксплуатационного показателя указывается общее щелочное число TBN. В некоторые индустриальные масла (охлаждающие смазочные жидкости и др.) добавляют активные сернистые присадки, которые имеют слабую кислотную реакцию. В связи с этим, в качестве показателя химических свойств, указывается общее кислотное число TAN. Этот показатель иногда определяется и при анализе работающего или отработанного масла как показатель степени окисления масла и накопления кислых продуктов сгорания топлива. [c.39]

    Надежность и безопасность работы технологических трубопроводов зависят от многих факторов, встречающихся в самых фазнообразных сочетаниях. Основными из них являются параметры и физико-химические свойства перекачиваемой среды (давление, температура, скорость потока, коррозиопность, пожаро- и взрывоопасность и т. д.) свойства материалов, из которых изготовлен трубопровод (прочность, пластичность, стойкость к коррозии) характер нагрузок, действующих на трубопровод расположение трубопровода (надземный, подземный, внутрицеховой, межцеховой) длительность эксплуатации трубопровода и др. Однако в большинстве случаев внезапный выход трубопроводов из строя происходит в результате нарушений правил эксплуатации и технологического режима, некачественной ревизии и ремонта. По данным ЦНИИТЭнефтехим, проводившего анализ отказов отдельных видов оборудования по процессам на нефтеперерабатывающих заводах, около 60% внезапных отказов технологических трубопроводов происходит в результате неполной ревизии и ремонта. [c.236]

    Экспериментальные исследования процессов дня прямого гидрообес-серивания мазутов показали большую зависимость их эффективности от компонентного состава и физико-химических свойств остаточного сырья. Анализ имеющихся данных об уровне развития этих процессов для облагораживания нефтяных остатков по мере утяжеления перераба-тьшаемого сырья показали, что для них характерно более резкое ухудшение основных показателей, чем наблюдались при развитии процессов гидроочистки нефтяных дистиллятов при утяжелении их сырья от бензина до вакуумного газойля. Как для гидроочистки дистиллятов, так и для гидрообессеривания нефтяных остатков главные показатели, определяющие эффективность и экономичность процессов — расход водорода и катализатора, давления в реакторах, производительность ехшницы реакционного объема (рис. 1.1). [c.9]

    Наряду с методом сольвентной обработки остатков низкомолекулярными растворителями широко используются методы [28] жидкостной хроматографии. Эти методы, особенно в варианте препаративного выделения различных групп компонентов остатков, позволяют кроме выявления структуры оценить. количественно концентрацию однотипных компонентов различных остатков и обеспечивают возможность последующего детализованного анализа каждой выделенной фракции по злементному составу, физико-химическим свойствам и другим показателям. Для препаративного разделения на группы компонентов нефтяные остатки подвергаются деасфальтизации с использованием в качестве растворителя гептана. Деасфалыированный остаток, или [c.31]

    В зарубежной литературе последних лет появились ряд публикаций, посвященных вопросам поиска оптимальной поровой структуры катализаторов для процессов каталитического гидрооблагораживання нефтяных остатков с применением математических методов, основанных на принципах диффузионной кинетики [60, 61, 62]. Наиболее интересные результаты получены на баае развиваемых в последнее время представлений о протекании основных реакций в режиме конфигурационной диффузии. Учитывая большое влияние на эффективность используемых катализаторов накопления в порах отложений кокса и металлов, необратимо снижающих активность катализаторов, наибольшее внимание уделяется анализу закономерностей изменения физико-химических свойств гранул катализатора в процессе длительной эксплуатации. В качестве примера рассмотрим результаты анализа влияния размера пор катализаторов на скорость деметаллизации нефтяных остатков [60]. Авторы предложили следующую зависимость для определения скорости деметаллизации с учетом физических свойств катализатора и времени его работь  [c.83]

    Формулы для расчета ВДК химических соединений в воздушной среде рабочей зоны выведены методом регрессионного анализа. Узаконенные ПДКр. з сопоставлялись с различными показателями токсичности и физико-химических свойств веществ. [c.29]

    Свойства нефтяных продуктов и дистиллятов в значительной степени определяются их химическим составом. Анализы по определению химического состава главным образом производятся па нефтеперерабатывающих заводах при подборе сырья для производства ароматики и контроле этого производства. Для ряда топлив, когда это имеет исключительное значение по условиям применения, в стандартах предусматривается характеристика группового углеводородного состава, т. е. содержание в них углеводородов отдельных классов. [c.200]

    При термокаталитической переработке происходит взаи-модсйстние железоокисного катализатора, приводящее к образованию новой твердой фазы коксовых отложений, т. е. мы имеем дело с топохимической реакцией, для которой характерны некоторые общие закономерности, а именно протекание реакции через образование ядер (зародышей) новой твердой фазы и их рост. В реакциях газа с твердым телом образование этих зародышей происходит, как правило, на поверхности твердого реагента или, по крайней мере, в слое, прилегающем к этой поверхности. После появления новой фазы реакция обычно локализуется на поверхности раздела твердых фаз — реагента и продукта реакции [3.39]. Химические свойства поверхности в принципе определяются природой протекающих химических превращений и их скоростями И то и другое может быть оценено лишь в результате трактовки косвенных измерений. В случае исследования реакции твердого тела с газом анализ может быть проведен с учетом -изменения состава газовой фазы. [c.71]

    При научении кинетики химических реакций широко используются (1)изико-химические методы анализа, которые позволяют определять состав реакционной смеси по ее свойствам. Большое значение имеет ири этом колориметрический метод. В отличие от химических методов он требует меньше времени, при этом обычно вещество анализируется непосредственно в растворе (без выделения) и в очень малом количестве. [c.373]

    Нефтяной смолой называется продукт пирогенизации нефти, получающийся в качестве главного или побочного продукта при разложении нефти в ретортах, генераторах и т. п. В зависимости от исходного материала нефтяная смола может обладать различными физическими и химическими свойствами. Заводы, ароматизирующие нефть, большей частью имеют дело уже с более или менее диферен-цированными продуктами, вроде холодильной или гидравличгой смолы. Во всяком случае все они оцениваются с точки зрения содержания легкого масла, что и имеет в виду "йх анализ. В исключительных случаях смола рассматривается и как, топливо, и тогда определяется еще и ее теплотюрная способность. В отношении технических условий обработки часто бывает необходимо знать содержание воды и взвешенной сажи. [c.397]

    Все методы анализа ароматических углеводородов можно разделить по суш,еству на физические и химические, а принципиально— на прямые и косвенные, т. е. можпо определять количество бензина н по разности — исследуемый углеводород (косвенный метод) и количество самого углеводорода (прямой метод). В обоих случаях все ошибки анализа ложатся на определяемое вещество поэтому рациональнее прямой метод, так как тогда уменьшается ошибка. I соясалению, все методы достаточно грубы и не дают, за редкими исключениями, хоть сколько-нибудь точных цифр. Эти методы раз-б1фаются далее, после обзора физических и химических свойств отдельных ароматических углеводородов легкого масла. [c.404]

    Благодаря большому количеству конструкций аппаратов для экстракции, выбор наиболее подходящего типа представляет собою довольно трудную задачу. Этот выбор следует делать на основе анализа физико-химических свойств жидкостей, технических условий работы и экономических показателей установки. При оценке пригодности экстракционных аппаратов той или иной системы большую помощь может оказать таблица сравнительной оценки отдельных параметров различных аппаратов с помощью балльной системы, предложенной Праттом [5]. [c.368]

    Метод группового анализа основан на различии наиболее просто определяемых физических и химических свойств углеводородов различных рядов. К числу таких свойств относятся плотность, показатель преломлеиия, анилиновая точка (критическая температура растворения продукта в анилине), адсорбируемость и отношение к серной кислоте. Групповой анализ дает напбол( е точные результаты при изучении бензинов прямой neperonrai. Хорошо обезвоженный образец бензина разгоняют с пятишариковым дефлегматором или на простейшей колонке на фракции с пределами выкипания, соответствующими пределам выкипания про- [c.96]

    Для того чтобы выяснить характер взаимодействия веществ в смеси, т. е. узнать, дают ли они между собой механические смеси, растворы нли химические соединения, используют метод физикохимического анализа. С его иомощью устанавливают зависимость, между изучаемым свойством и составом системы и результаты ис сделрвания выражают в виде диаграммы состав — свойство. Анализ днаг-раммы состав — свойство позволяет определить число и химическую природу фаз "в различных смесях, границы существования фаз, характер взаимодействия компонентов, наличие соединений, их состав н относительную устойчивость. [c.288]

    Сложным вопросом является также и выбор самих аппроксимирующих зависимостей. В некоторых случаях зависимости, ан-проксимирушщие экспериментально измеренные физико-химические свойства, являются модельными, при этом возникает проблема стандартизации этих моделей. В других случаях, когда данные аппроксимируются какими-либо эмпирическими зависимостями, необходимо решать задачу выбора вида зависимости, оптимально приближающей экспериментальные данные, для каждого физикохимического свойства. Известны попытки выбора таких зависимостей [37], однако в целом использование полученных разнородных данных затрудняется. Поэтому целесообразен выбор какой-либо эмпирической зависимости, аппроксимирующей оптимальным образом достаточно большое подмножество требуемых физико-химических свойств. В работе [34] большинство зависимостей физикохимических свойств от температуры аппроксимировалось полиномиальными уравнениями, однако выбор такой аппроксимации был сделан не на основе анализа оптимальности, а исходя из практических соображений. В целом направление дальнейшего прогресса в этой области заключается, очевидно, в использовании сплайнов для аппроксимации физико-химических данных. [c.229]

    Анализ позволяет выявить такие характеристики компонентов, как склонность к полимеризации, коррозиоиность и т. д., которые будут определять начало технологической схемы. Выявление азеотропных смесей, а также других характерных особенностей исходной смеси есть формирование эвристик с учетом физико-химических свойств разделяемой смеси. Такой учет приводит к значительному сокращению размерности задачи синтеза. Например, наличие в десятикомпонентной смеси бинарного азеотропа приводит к сокращению размерности задачи примерно в пять раз. А если он к тому же определяет деление на первой колонне, то сокращение числа вариантов еще более существенное (более чем в десять раз). Ограничения, выявленные на этапе анализа физико-химических свойств и условий фазового равновесия, учитываются при выполнении следующих этапов. [c.140]

    Из анализа иерархической структуры эффектов ФХС ( 1.1) видно, что характерной особенностью исследуемой системы является ее двойственная детерминированно-стохастическая природа. К важнейпшм стохастическим особенностям этой системы следует отнести характер распределения элементов фаз по времени пребывания в аппарате, вид распределений включений дисперсных фаз по размерам, эффекты механического взаимодействия между фазами, приводящие к столкновению, дроблению и коалесценции (агломерации) включений, характер распределения включений по глубине химического превращения, вязкости, плотности и другим физико-химическим свойствам. [c.67]

    Конечной целью исследований равновесий является выяснение стехиометрии сосуществующих в растворе химических образований (форм) и расчет констант равновесия. Задача обычно решается путем анализа и математической обработки экспериментальных зависимостей типа свойство раствора — состав раствора. Для количественного решения необходимо в явном или неявном виде установить функциональную связь между измеряемым физико-химическим свойством (свойствами) раствора и его аналитическим составом Число основных физико-химических положений, используемых при этом, неве-лпко. Математически опи моделируются уравнениями, которые можно разбить на три группы уравнения материального баланса (МБ), уравнения закона действующих масс (ЗДМ), уравнения связи измеряемого свойства с равновесными концентрациями тех или иных химических форм. [c.5]

    Оценки (4) представляются интересными в силу того, что, во-первых, они получены фактически из данных по давлению насыщенного пара, а определяют погрешность нахождения Т превращения твердое — н идкость , во-вторых, они указывают на существенную зависимость а -Т от физико-химических свойств БС, так как дР- дТ (энергетические свойства системы) меняются в зависимости от температуры и состава. Таким образом, при проведении ТЭ с одной и той же инструментальной точностью надежность точек ликвидуса будет разной. Термодинамический анализ свойств БС показывает, что наибольшие значения оГд следует ожидать в окрестностях понвариантных точек системы — точек однородного состава, эвтектики, перитектики и соединения [.5]. Если имеется набор эксперименталь-1ШХ Р — Т — X данных БС, то, используя первый вариант выражения (4), можно установить аТ . Для предварительной оценки возможностей метода ТА получения Т — х проекции конкретно выбранной БС можно воспользоваться методами [c.156]


Смотреть страницы где упоминается термин Химические свойства и анализ: [c.74]    [c.22]    [c.356]    [c.33]    [c.252]    [c.35]    [c.96]    [c.139]   
Смотреть главы в:

Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 8 -> Химические свойства и анализ




ПОИСК





Смотрите так же термины и статьи:

Анализ химический



© 2025 chem21.info Реклама на сайте