Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Соединения углерода и водорода Углеводороды

    В предыдущих разделах мы подробно рассмотрели углеводороды и их кислород- и азотсодержащие производные. Входящие в состав всех этих соединений углерод, водород, кислород и азот содержатся в подавляющем большинстве природных органических соединений. Эти элементы еще в начале возникновения органической химии были названы органогенами, т. е. элементами, порождающими органические молекулы. [c.302]

    В термокаталитических реакторах успешно окисляются оксид углерода, водород, углеводороды, аммиак, фенолы, альдегиды, кетоны, пары смол, канцерогенные и другие соединения с образованием СОг, НгО, N2. Степень окисления этих веществ может быть очень высокой — до 98—99,97о- Катализаторы используют в виде сеток, листов и таблеток различной формы. Для увеличения удельной поверхности катализаторов и экономии дорогих металлов применяют керамические пористые носители из окси- [c.11]


    Поливинилхлорид 160 Хлорорганические соединення, хлористый водород, углеводороды, окись углерода [c.150]

    Элемент 2-го периода и 1УА-группы Периодической системы, порядковый номер 6. Электронная формула атома [2Не]25 2р , характерные степени окисления —IV, +11 и +1У, состояние С считается устойчивым. Имеет среднюю для неметаллов электроотрицательность. Проявляет неметаллические (кислотные) свойства. Образует неорганические вещества — оксиды, угольную кислоту и ее многочисленные соли (карбонаты), бинарные соединения (карбиды и др.), а также огромное (практически неограниченное) число органических веществ — соединений с водородом (углеводороды) и их производных, содержащих различные по длине цепи и циклы атомов углерода. [c.179]

    Особенности химических связей углерод—углерод, связей углерода с водородом, азотом и кислородом и связей кремния с кислородом. Вытекающие из свойств связей различия в природе биополимеров и силикатов как важнейших классов природных соединений углерода и кремния. Химия неорганических соединений углерода простейших углеводородов, углекислого, угарного газов и их производных, комплексных соединений с С-донорными лигандами. Особенности связей С—Н, С—С, С—О, как основа биоэнергетики и конструкционных ролей углеводов и липидов в клетке. [c.332]

    Массовая теплота сгорания углеводородов, входящих в состав керосиновых фракций, зависит От соотношения углерод водород и типа углеводородных соединений, уменьшаясь в ряду парафиновые — нафтеновые — ароматические углеводороды. [c.29]

    Соединения углерода и водорода в зависимости от количества атомов этих элементов и от их взаимного расположения в молекулах создают бесчисленное множество разнообразных углеводородов — парафиновых (алкановых), нафтеновых (циклановых) и ароматических. Непредельные углеводороды в сырых нефтях практически отсутствуют. [c.3]

    Предельные углеводороды. Возможность количественного структурногруппового анализа по спектрам поглощения в ближней инфракрасной области впервые была показана Розе в 1938 г. Интенсивности полос обертонов валентных колебаний связи углерод — водород были измерены для ряда к-парафинов, разветвленных парафинов, нафтенов и ароматических соединений. Ввиду того, что ни одна из этих полос не разрешается пол- [c.330]

    Из меди и ее сплавов с цинком (латуни) изготовляют холодильники газодувок и газовых компрессоров, уплотнения крышек и фланцевых соединений аппаратов высокого давления, блоки разделения газовых смесей и воздуха методом глубокого охлаждения и другое оборудование, не имеющее соприкосновения с аммиаком. Аммиак, взаимодействуя с медью и ее сплавами, образует сложные комплексные соединения. При этом полностью изменяются физические свойства металлов и может нарушиться герметичность оборудования. Кроме того, прн высоких температурах в газовой среде восстановительные газы (водород, окись углерода и углеводороды) вызывают хрупкость окисленной меди. [c.94]


    Наряду со сходством имеются и различия в молекулярной структуре масел, смол и асфальтенов. Масла состоят из высокомолекулярных углеводородов, а также в случае сернистых нефтей из сероорганических соединений, близких по строению к высокомолекулярным углеводородам. Смолы и асфальтены содержат не только углерод, водород, серу, но и кислород и азот, ванадий, никель и некоторые другие металлы. Азот концентрируется преимущественно в асфальтенах, а кислород — в смолах. Суммарное содержание гетероатомов в них достигает 10% (и более). [c.11]

    Нейтральные смолы — полужидкие, а иногда почти твердые, вещества темно-красного цвета, плотностью около единицы. Они растворяются в петролейном эфире, бензоле, хлороформе и четыреххлористом углероде. В отличие от асфальтенов нейтральные смолы образуют истинные растворы. Кроме углерода и водорода в состав смол входят сера, кислород и иногда азот. Углеводороды находятся в смолах в виде ароматических и нафтеновых циклов со значительным количеством (40—50 вес. %) боковых парафиновых цепей. Весовое соотношение углерод водород составляет примерно 8 1. Сера и кислород входят в состав гетероциклических соединений. Смолы химически не стабильны. Под воздействием адсорбентов в присутствии кислорода частично происходит окислительная конденсация их в асфальтены. Физические свойства смол зависят от того, из каких фракций нефти они выделены. Смолы из более тяжелых фракций имеют большие плотность, молекулярный вес, красящую способность и содержат больше серы, кислорода и азота. Достаточно добавить в бензин 0,005 вес. % тяжелой смолы, чтобы придать ему соломенно-желтую окраску. [c.32]

    Химический анализ состоит в разложении вещества на образующие его элементы и затем в измерении относительного количества каждого полученного элемента, выраженного в граммах на 100 г исходного соединения либо в весовых (массовых) процентах. Один из способов проделать это, если соединение представляет собой углеводород (состоит только из углерода и водорода), заключается в сжигании известного количества вещества в кислороде, а затем измерении полученных количеств СОд (диоксид углерода) и Н2О. [c.66]

    Продувочные и сбросные газы циклических процессов нефтепереработки и нефтехим ичеокого синтеза (гидроочистки, гидрирования углеводородов, каталитического и гидрокрекинга, синтеза высших спиртов и т. д.) содержат кроме водорода [концентрация которого достигает 60—75% (об.)] азот, аргон, оксид и диоксид углерода, алифатические углеводороды С]—Се, ароматические соединения Се— g, соединения серы и т. д. Расход этих газов, находящихся обычно под высоким (3,5—10,5 МПа) давлением, на современных нефтехимических установках может достигать 20 000 м /ч. [c.279]

    Чаще всего баллонный водород содержит небольшие количества кислорода. Нередко в нем встречаются галогены (главным образом хлор) и соединения серы. Водород, полученный из природного газа или легких углеводородов, может содержать галогены, серу, щелочь, диоксид углерода, азот и даже ацетилен и этилен. [c.105]

    Нефть представляет собой сложную смесь большого количества углеводородов, т. е. химических соединений углерода (С) с водородом (Н). Поэтому основными элементами, составляющими нефть, являются углерод (83—87%) и водород (И — [c.7]

    Самое простое соединение углерода с водородом СН4. Этот углеводород называется метаном и является основной составной частью естественного нефтяного газа. [c.7]

    Прямое соединение углерода с водородом удается осуществить лишь при температурах выше 1200° С. При низких температурах связи С—Н в предельных углеводородах весьма прочны, что и объясняет высокую химическую стабильность этих углеводородов при умеренных температурах. С повышением температуры прочность связи С—Н понижается, а реакционная способность парафинов повышается. Следовательно, стойкость и химическая пассивность предельных углеводородов не являются неизменными их свойствами. Изменением внешних условий реакции (температура, катализатор, излучение) удается разбудить реакционную способность этих углеводородов, и они вступают в самые разнообразные химические реакции. [c.54]

    По данным современной химии углеводороды могут образоваться в результате различных реакций как при распаде и превращениях сложных органических веществ, имеющих в своем составе углерод, водород и другие элементы, так и при реакциях соединения, или синтеза, когда из элементов углерода и водорода или из простых веществ, содержащих эти элементы, образуются те или иные углеводороды. [c.70]

    Некоторые углеводороды, в частности ароматические соединения и др. с низким соотношением углерод — водород, при сжигании обычно дают коптящее пламя, для избежания этого добавляют  [c.183]

    Однако это уравнение весьма приближенное, так как очень трудно осуществить полное горение при стехиометрическом соотношении топливо —окислитель (кислород или воздух). Для достижения полного сжигания всегда требуется некоторый избыток окислителя. Если это условие не соблюдается, то некоторое количество топлива не будет сгорать до СОг и будут образовываться продукты неполного сгорания, в которых присутствуют окись углерода, водород, ненасыщенные углеводороды, формальдегид (иногда элементарный углерод). Если процесс горения остановить на промежуточной стадии, то количество высвобождаемого тепла будет значительно ниже. Для того чтобы быть уверенным в полном завершении процесса образования продуктов неполного горения, необходимо подвести дополнительное тепло, количество которого превышает количество тепла, выделяемого при реакции их образования. Процесс сжигания осложняется также цепным характером протекания реакций горения через образование промежуточных соединений перед появлением конечного продукта. Промежуточные соединения представляют собой химически недолговечные образования и радикалы, которые способствуют протеканию процесса горения и поддерживают его постоянным. Рассмотрим цепную реакцию горения метана  [c.97]


    К нафтенам относят алициклические углеводороды состава С Н2 , С Н2 -2 и С Н2 -4. В нефтях содержатся преимущественно циклопентан СзНю, циклогексан СбН 2 и их гомологи. И наконец, арены (ароматические углеводороды). Они значительно беднее водородом, соотношение углерод/водород в аренах самое высокое, намного выше, чем в нефти в целом. Содержание водорода в нефтях колеблется в широких пределах, но в среднем может быть принято на уровне 10—12%, тогда как содержание водорода в бензоле 7,7%. А что говорить о сложных полициклических соединениях, в ароматических кольцах которых много ненасыщенных связей углерод — углерод Они составляют основу смол, асфальтенов и других предшественников кокса, и будучи крайне нестабильными, осложняют жизнь нефтепереработчикам. [c.18]

    Однако неожиданно карбидная или, как ее еще называют, абиогенная теория о происхождении нефти получила новые доказательства — от астрофизиков. Исследования спектров небесных тел показали, что в атмосфере Юпитера и других больших планет, а также в газовых оболочках комет встречаются соединения углерода с водородом. Ну, а раз углеводороды широко распространены в космосе, значит в природе все же идут и процессы синтеза органических веществ из неорганики. Но ведь именно на этом предпо.пожении и построена теория Менделеева. [c.22]

    Кроме вулканической гипотезы у сторонников абиогенного происхождения нефти есть еще и космическая. Геолог В. Д. Соколов в 1889 году высказал предположение, что в тот далекий период, когда вся наша планета еще представляла собой газовый сгусток, в составе этого газа присутствовали и углеводороды. (Помните, что в атмосфере некоторых планет были обнаружены соединения углерода с водородом.) По мере охлаждения раскаленного газа и перехода его в жидкую фазу, углеводороды постепенно растворялись в жидкой магме. Когда же из жидкой магмы стала образовываться твердая земная кора, она, согласно законам физики, уже не могла удержать в себе углеводороды. Они стали выделяться по трещинам в земной коре, поднимались в верхние ее слои, сгущаясь и образуя здесь скопления нефти и газа. [c.24]

    Углеводороды — наиболее простые органические соединения, в состав которых входят только углерод и водород Заменяя в этих соединениях атомы водорода на другие атомы или функциональные группы, можно получить различные и многочисленные производные углеводородов — практически все известные классы органических соединений. [c.39]

    Углеводород (разд. 24.1)-соединение углерода и водорода. Замещенные углеводороды могут содержать функциональные группы, в которые кроме углерода и водорода входят атомы других элементов. [c.437]

    Наиболее доступными источниками углерода, водорода и кислорода являются органические соединения углеводы, аминокислоты, многоатомные спирты, липиды, соли жирных кислот. Углеводороды усваиваются ограниченным числом микроорганизмов. [c.284]

    В рядах ациклических (жирных) и карбоциклических соединений простейшими являются углеводороды, состоящие только из. углерода и водорода. Все остальные соединения этих рядов рассматривают как производные углеводородов, образованные замещением одного, двух или нескольких атомов водорода в углеводородной молекуле другими атомами или группами атомов [c.559]

    До сих пор речь шла о органических соединениях, молекулы которых состоят из атомов углерода, водорода, галогенов и кислорода. Мы выяснили, что такие соединения весьма многообразны - от природного газа и бензина до каучуков И пластмасс. Однако органические соединения могут быть еще более разнообразными, экзотическими и не менее важными веществами такими, как витамины, лекарственные препараты, моющие и взрывчатые вещества, соединения, придающие окраску, наконец, соединения, входящие в состав живых тканей, которые управляют химией живых организмов, передают детям свойства родителей, благодаря которьш живая ткань отличается от неживой материи. Все это - производные углеводородов, но в них огромную роль играют атомы азота (прежде всего), серы и фосфора. Перейдем к рассмотрению таких соединений. [c.125]

    Термодинамические свойства углеводородов и продуктов их окисления представляют особый интерес ввиду того, что ценность углеводородов как горючего зависит от разности менеду величиной их внутренней энергии и соответствуюш ими величинами продуктов сгорания. Однако ввиду того, что при сгорании не все реакции протекают до конца, т. е. до образования двуокиси углерода и воды, возникает также необходимость знать термодинамические свойства многих устойчивых и неустойчивых промежуточных соединений углерода, водорода и кислорода, образуюш,ихся при горении. Животные также получают необходимые им тепло и энергию за счет процесса окисления, сопровонгдаюш егося попутным образованием многочис-денных нестойких и устойчивых промежуточных продуктов. Растения завершают вторую часть этого цикла. Используя солнечный свет в качестве первичного источника энергии для процесса фотосинтеза, растения жадно поглощ ают двуокись углерода из атмосферы, связывают ее с водой и синтезируют соединения, менее деградированные в энергетическом отношении. После того как этот процесс образования менее деградированных соединений пройдет через целый ряд стадий, определенное промежуточное соединение (например, сахар) может являться вполне подходящим горючим для осуществляемого в организмах животных цикла деградации. Таким образом, процессы, ведущие к рассеиванию энергии или к накоплению ее, постоянно протекают с образованием многочисленных общих промежуточных соединений, содержащих углерод, водород и кислород. Эти соединения играют ваншую роль, поскольку они охватывают всю [c.458]

    В противоположность очень большому числу соединений углерода водородом число соединений кремния с водородом невелико. идриды кремния, содержащие более ишсти атомов кремния, со скелетами, аналогичными углеродным скелетам в углеводородах, неизвестны. Кроме того, насыщенные углеводороды не реагируют водой, а гидриды кремния легко гидролизуются при этом троисходит разрыв связей 5 — 51, и образуются связи 81 — О — 81, Кремний предпочитает образовывать связи с кислоро.аом, и химия [c.493]

    Для термодинамически обратимых химических реакций соединения углерода, водорода и углеводородов с кислородом отношение e/t близко к единице, следовательно, эти топлива являются очень ценными источниками энергии. При сжигании же этих топлив их химическая энергия преврашается в менее ценную тепловую энергию, поэтому при горении имеет место потеря эксергииЧ [c.163]

    Главные химические элементы, атомы которых образуют молекулы органических соединений, углерод, водород, кислород и азот называются органогенами. При изучении различных классов органических соединений, образованных атомами этих элементов (углеводородов, кислородсодержащих и азотсодержащих), многократно обращалось внимание на химические реакции, в которых принимают участие органические производные, содержащие атомы галогенов, фосфора, серы, различных металлов и других элементов. Их можно объединить под общим названием э.гементорганических соединений. Многие из этих соединений имеют очень важное физиологическое значение, а многие широко применяются в народном хозяйстве для получения разнообразных веществ с очень ценными свойствами. [c.451]

    Сланцевое масло в противополон<ность нефти не яиляется природным продуктом. Оно образуется при пиролизе органической части горючих сланцев его состав в значительной степони зависит от условий производства. Горючие сланцы состоят из различных неорганических компонентов, в которых обычно преобладает глина, связанная с органическими компонентами. Органическая часть горючих сланцев ограниченно растворима в обычных растворителях в ее состав входят углерод, водород, сера, кислород и азот. При нагревании горючие сланцы разлагаются и выделяют газ, сланцевое масло и углеродистый остаток (кокс), который остается в отработанном сланце. Получающееся сланцевое масло иапоминает нефть, так как состоит из углеводородов и их производных, содержащих серу, азот и кислород. Неуглеводородных компонентов в сланцевом масле значительно больше, чем в нефти, углеводородная ше часть содержит менее насыщенные соединения, чем углеводородная часть нефти по составу она напоминает, как и можно было ожидать, продукты термического крекинга. [c.60]

    Реакции восстановления окиси углерода водородом лежат в основе синтеза целого ряда продуктов, как то метанола, высших спиртов, сложных кислородсодержащих соединений, углеводородов и т. д. Направление синтеза (с точки зрения получаемых продуктов) зависит от соотношения СО водород , технологического режима и природы катализатора. В Германии синтез углеводородов (так называемый синтез по Фишеру и Тропшу) в годы II мировой войны подвергся детальному изучению и широкому внедрению в промышленность. [c.591]

    Рассмотрение реакций серосодержащих соединений с водородом показывает, что их взаимодействие ведет к разложению молекулы с разрывом связей углерод — сера и образованию соответствующего углеводорода — алифатического, нафтенового, нафтено-ароматического или ароматического. На глубину разложения влияют условия реакции с повышением давления глубина превращения возрастает такое же влияние оказывает увеличение количества водорода при повышении температуры глубина превращения несколько снижается. Однако термодинамические расчеты, проведенные для ряда сульфидов и производных тиофена, показывают, что при применяемых обычно в гидрогенизац1ион ых процессах температуре и концентрации водорода возможно превращение на 90—997о [1]. [c.293]

    Высококипящие фракции нефти наряду с индивидуальными углеводородами в значительном количестве содержат гетероор-ганические соединения, в состав которых одновременно входят углерод, водород, кислород, сера, азот и металлы. Эти соединения объединяют в группу смолисто-асфальтеновых веществ. По отношению к различным растворителям их подразделяют на четыре группы 1) нейтральные смолы, растворимые в легком бензине (петролейном эфире), пентане 2) асфальтеиы, нерастворимые в петролейном эфире, но растворимые в горячем бензоле  [c.24]

    Химические анализы кокса показали, что в его органической части массовое содержание углерода 80—86%, водорода 3—5%, серы 4—7%, азота — 1%, кислорода 4—8%. Отложения обычно представляют собой смесь органических и неорганических веществ, причем на отдельных участках органическое вещество в отложениях достигает практически 100%. Можно считать установленным, что причина образования коксовых отложений — реакции жидкофазного автоокисления реакцнонноспособных компонентов сырья растворенным кислородом. При переработке прямогопных бензиновых фракций такими компонентами являются сераорганические соединения и ароматические углеводороды, при переработке бензинов вторичного происхождения — непредельные углеводороды с сопряженными двойными связями. [c.108]

    Газификация нефтяных остатков представляет собой процесс неполного горения углеводородов, протекающий в основной с образованием окиси углерода, водорода и примесей двуокиси углерода, метана, сернистых соединений. Он солрововдается выделением нежелательного продукта - свободного углерода (сажи). Этот процесс нашел широкое применение во всех странах, так в настоящее время работает более 200 промышленных установок по получению водорода и скнтез-газа, построенных по лицензиям фирм "Тексако" и "аелл". [c.114]

    Прямогонные остатки, выкипающие выше 350 °С, представляют собой смесь высокомолекулярных углеводородов и асфальто-смолистых веществ. Содерл<ание асфальто-смолистых веп1еств в наиболее тяжелых высокосмолистых нефтях достигает 40—50%. В их состав, как правило, входят углерод, водород, кислород и довольно часто сера, азот и металлоорганические соединения. По мере увеличения содержания серы, кислорода и общего количества всех гетероатомор, (8, К, О) возрастает поверхностная активность асфальто-смолистых веществ. Это способствует их вспучиванию при коксовании и влияет на качество всех продуктов коксования, в том числе и на качество кокса. [c.54]

    Полученный диоксид углерода разлагают на оксид углерода (угарный газ) СО и кислород. Эта реакция требует больших затрат энергии. Поэтому, по всей вероятности, ее будет выгодно производить лишь при наличии дешевых энергетических источников. 1акими источниками мо-гут стать атомные реакторы или термоядерные установки. Здесь при температуре около 5000 °С в присутствии катализаторов и будет получен оксид углерода. Освободившийся кислород опять-таки будет отправлен в атмосферу, а оксид углерода будет соединен с водородом. Полученные углеводороды в дальнейшем могут быть использованы в химическом производстве примерно так же, как сегодня используются производные нефти. [c.140]

    Число соединений углерода, известных науке, необычайно велико. По строению и составу их разделяют на классы. Соединения, в состав которых входят атомы только углерода и водорода, называют углеводородами. В принципе, все остальные органические соединения могут быть представлены или нолучены из углеводородов путем замещения водорода различными атомами или группами атомов. Поэтому органическую химию иногда называют химией углеводородов и их ПрОИ №ОДНЫХ. [c.181]


Смотреть страницы где упоминается термин Соединения углерода и водорода Углеводороды: [c.243]    [c.35]    [c.122]    [c.6]    [c.125]    [c.96]    [c.79]    [c.11]   
Смотреть главы в:

Органическая химия Издание 2 -> Соединения углерода и водорода Углеводороды




ПОИСК





Смотрите так же термины и статьи:

Водород соединения



© 2025 chem21.info Реклама на сайте