Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ряд напряжений металлов в органических растворителях

    Электролитическое получение редкоземельных металлов. Разложение амальгам. Амальгамы получают электролизом растворов безводных хлоридов РЗЭ в органических растворителях (чаще всего в абсолютном спирте) на ртутном катоде. Электролиз хлоридов Се, La, Nd и Sm рекомендуется проводить при катодной плотности тока 0,05 А/см , напряжении 35—70 В, темпера- [c.144]


    Фторопласт-40 не растворяется в известных органических растворителях, стоек к действию агрессивных кислот, щелочей и окислителей, за исключением расплавленных щелочных металлов и фтора. По химической стойкости он почТи не уступает фторопласту-4. После нагревания прессованных образцов фторопласта-40 в течение 3 ч в 98%-ной азотной кислоте при 78 °С их масса увеличивается на 1.6%, а в 45%-ном едком натре или 100°С она уменьшается на 0,03%. При этом разрушающее напряжение при растяжении и относительное удлинение при разрыве не изменяются. Данные о степени набухания и показатели механических свойств фторопласта-40 после выдержки в агрессивных средах при 20 °С приведены в таблице. [c.161]

    Из рисунков видно, что экспериментальные точки довольно плотно группируются вокруг прямых. Особенно хорошо выполняется соотношение (1.42) для расплавленных смесей щелочно-галоидных солей. Из наклона прямых возможно оценить величину напряженности электрического поля металла в точке электрокапиллярного максимума. Если принять, что для всех органических растворителей, приведенных на рис. 1.4 е = Пд 2, то величина напряженно сти электрического поля ртути в точке экм, равна 1 10 В/см. [c.21]

    Ряд напряжений металлов в органических растворителях [c.73]

    Построение ряда напряжений в каком-либо растворителе не вызывает принципиальных затруднений, если выбрать определенный электрод сравнения. Однако, при сравнении потенциалов электродов и рядов напряжений в разных растворителях возникают принципиальные трудности, так как при переходе от одного растворителя к другому изменяется стандартный потенциал как электрода сравнения, так и электродов из других металлов. В этой связи Плесков [135] указывал на неудачный выбор в качестве стандартного электрода для сравнения рядов напряжений в разных растворителях водородного электрода, поскольку активность ионов водорода сильно изменяется при переходе от воды к органическому растворителю. В качестве стандартного электрода для сравнения рядов напряжений в разных растворителях он предложил использовать рубидиевый электрод. Большой кристаллографический радиус и минимальный заряд иона НЬ+ приводит к минимальной сольватации иона. Поэтому его сольватация не должна значительно изменяться при переходе от воды к другим растворителям, и, следовательно, нормальные потенциалы рубидиевого электрода в разных растворителях не должны сильно различаться. [c.74]

    Целесообразность применения таких клееных обшивок объясняется повышением усталостной прочности и ресурса эксплуатации конструкций за счет исключения концентрации напряжений снижением расхода металла примерно в 2 раза снижением трудоемкости в 2 раза за счет исключения операции по нанесению и сушке защитных грунтов снижением массы конструкций на 5— 25% исключением необходимости в системе ванн для химического фрезерования уменьшением загрязнения окружающей среды снижением пожарной опасности за счет исключения применения защитного грунта, содержащего органические растворители. [c.255]


    Смазочный материал должен образовывать однородный слой на поверхности детали и легко удаляться с нее. Для удаления смазочного материала используют органические растворители, промывку щелочами или нагрев. Смазочный материал не должен пригорать к стенкам матрицы. Выбор смазочного материала зависит от обрабатываемого металла, его склонности к деформационному упрочнению и степени деформации.Часто применяется бондеризация поверхности и обработка ее щавелевой кислотой. Металлические мыла, например щелочные соли стеариновой или арахиновой кислот, применяют в виде порошков при этом трудно достичь однородности слоя на поверхности. Пластичные смазки или воскоподобные вещества легче наносить, однако следует учитывать, что при высокой температуре они могут потерять вязкость. Смеси пластичных смазок и порошкообразных солей металлов имеют отдельные преимущества, поскольку соли металлов работают как твердые смазочные материалы и сохраняют смазочную способность даже при высокой температуре (см. главу 7). Чистые мыла металлов, смешанные с носителями смазки, обычно применяют при обработке деталей простой геометрии, когда напряжение пластического течения не превышает 1500 Н/мм [11.182]. [c.385]

    Контроль качества покрытия. Перед началом производства работ необходимо проверить вязкость композиций, поступивших с завода-изготовителя. При необходимости разбавление производят хозяйственно-питьевой водой. Применение органических растворителей запрещено. Готовое покрытие проверяют внешним осмотром. Допускаются наплывы толщиной не более 4 мм и площадью до 20 см на 1 м поверхности, но не более 5 % обшей площади покрытия. Наплывы, превышающие допустимые размеры, необходимо срезать острым ножом или ножницами. При этом категорически запрещается отрывать покрытие от металла или бетона. При незначительных повреждениях их устраняют нанесением сверху слоев защитной композиции. При сквозных повреждениях дефектные места необходимо вырезать, устранить причину повреждения, зачистить поверхность и далее нанести покрытие по технологии, описанной ранее. При защите металлической поверхности допускается проверка сплошности покрытия дефектоскопом при напряжении 4 кВ. Толщину покрытия определяют прибором МТ-32Н. При невозможности такого определения (по бетону) с одновременным нанесением основного покрытия изготавливают контрольные образцы. [c.126]

    Коррозионное растрескивание происходит при одновременном воздействии значительных растягивающих напряжений и коррозионной среды (например, морской воды, конденсата, сварочных флюсов, обезжиривающих смесей, смазок, органических растворителей и различных химических веществ (табл. 3.2)). Растягивающие напряжения возникают на поверхности металла при статической нагрузке. Коррозионное воздействие приводит к концентрированию напряжений и превышению ими предела текучести металла. При достаточно длительной выдержке сочетание коррозии металла с высокими локальными концентрациями напряжений приводит в конечном счете к потере прочности. Неметаллы также проявляют сходные особенности поведения. [c.46]

    После всех отрицательных рекомендаций, приведенных выше, можно утверждать, что лучшие отражающие поверхности имеются у чистых, хорошо проводящих металлов, поверхность которых отожжена и очищена каким-либо способом, не вызывающим поверхностных напряжений, например с помощью кислот или органических растворителей. [c.177]

    Фосфатные покрытия представляют собой пленку труднорастворимых в воде фосфорнокислых соединений, образовавшихся в результате взаимодействия металла с фосфорной кислотой и ее кислыми солями. Они устойчивы в обычных атмосферных условиях, нейтральной водной среде и ряде органических продуктов — растворителях, смазочных маслах, но разрушаются под действием кислот и щелочей. Защитная способность их по отношению к стали выше, чем оксидных покрытий, полученных химическим путем, а после пропитки лаками или другими полимерными материалами становится сопоставимой с защитой, достигаемой с помощью гальванических покрытий. Фосфатные пленки являются электроизоляционным материалом, их пробивное напряжение, в зависимости от толщины и условий формирования, достигает 250—500 В, а после пропитки электроизоляционными лаками — до 1000 В. Антикоррозионные и электроизоляционные свойства не ухудшаются до 200 °С. [c.273]

    Адсорбционный механизм растрескивания лежит в основе растрескивания под напряжением пластмасс в органических растворителях [33, 34], а также растрескивания твердых металлов под действием жидких металлов (охрупчивание в жидких металлах). Таков и механизм, предложенный ранее Петчем и Стейблсом Т35], объясняющий коррозионное растрескивание стали, вызванное на-водороживанием (см. разд. 7.4). [c.142]


    В частности, ион меди весьма энергично сольватируется в некоторых органических растворителях в присутствии избытка и некоторых неорганических ионов. Это приводит к тому, что в таких растворителях медь располагается в ряду напряжений до водорода и вытеюняет его из растворов кислот. В других условиях щелочная среда, наличие других ионов и молекул, более прочно связывающих окисленную форму метачла в виде комплексного соединения (см. ниже), осадка и т. п. будут иметь место другие соотношения восстановительных активностей металлов. Здесь мы рассматриваем ряд напряжений только для водных растворов солей в нейтральной или кислой средах как самых распространенных и практически важных систем. [c.330]

    Высокодисперсные золи металлов и сплавов в самых различных дисперсионных средах могут быть получены методом электрораспыления, промежуточным по своей физико-химической природе между диспергированием и конденсацией. Наиболее эффективно осуществляется электрораспыление порошков в непроводящих средах с применением высокочастотных разрядов высокого напряжения. Этот метод, разработанный Бредигом и Сведбергом, позволяет получать разнообразные золи, например такие экзотические, как золи щелочных металлов в органических растворителях. Можно также получать золи со сложными по составу частицами дисперсной фазы в результате электрораспы-ления сплава заданного состава. [c.139]

    Органические растворители в чистом виде или в смесях с водой часто используют для изменения электрохимической активности металлов. Известий для воды электрохимический ряд напряжений металлов может сильно меняться в органических раствортелях. Так, хорошо известно, что метал-[ическая медь не выделяет водород из водных растворов кислот, так как на- одится справа от водорода в ряду напряжений. Другими словами, нормаль- [c.287]

    Первые литературные сведения по электролитическому выделению щелочных металлов из неводных растворов относятся к концу прошлого века. В. Лашинский [1007] в 1895 г. из раствора хлорида лития в ацетоне на медной проволоке выделил металлический литий в виде серой пленки. До середины настоящего столетия были предприняты многочисленные попытки электроосаждения лития и других щелочных металлов из неводных сред, в основном органических. Однако характер этих работ эпиаодический, в основном качественный и нередко малодоказательный. Катодные осадки часто представляют собой соединения щелочного металла и растворителя. А основным доказательством присутствия щелочных металлов во многих работах считается бурное взаимодействие продуктов электролиза с водой. Естественно, что такую же реакцию способны дать и металлоорганические соединения. В работах часто не приводятся условия эксперимента, использование высоких напряжений (100 В и выше) вызывает осмоление растворителя. Современный термодинамический анализ возможности взаимодействия щелочных металлов со многими растворителями [203, 201] показывает, что многие из них являются окислителями по отношению к щелочным металлам. В ранних работах часто использовались растворители, заведомо активные по отношению к выделяемому щелочному металлу. Таковы, например, работы по электролизу спиртовых растворов щелочных металлов, где возможно образование алкоголятов, а затем, в результате их электролиза, эфиров. [c.138]

    Изготовление слоев оксидов редкоземельных элементов, тория, урана, протактиния, нептуния и транснептуниевых элементов электроосаждением из неводных сред имеет неоспоримые преимуш,ест-ва по сравнению с водными растворами. Образуюш,иеся на катоде при электролизе в водной среде гидроксиды лантаноидов и актиноидов аморфны. При дальнейшей термической обработке они образуют оксидные слои с большим количеством структурных дефектов. При электролизе из органических растворов на катоде образуются кристаллические структуры, которые при прокаливании легко переходят, теряя органическую составляюш,ую, в кристаллические структуры оксидов РЗЭ и актиноидов. Кроме того, метод электроосаждення из неводных растворов характеризует большая скорость проведения процесса, полнота выделения металла, прочность сцепления о подложкой слоев толщиной 1—5 мг/см , равномерность распределения покрытия на больших площадях. Наилуч-шие результаты получены из спиртовых растворов нитратов и ацетатов РЗЭ и актиноидов. Растворимость солей данных металлов в органических растворителях низка, поэтому в основном применяют насыщенные растворы. Из-за низкой проводимости растворов и окисной пленки на электроде используются высокие напряжения (порядка сотен вольт), плотности тока низкие. Большое значение при подборе оптимальных условий осаждения имеют площадь электродов, расстояние между ними, объем электролита, предварительная обработка электродов. Катодный процесс сопровождается газовыделением, вызывающим образование неравномерной пленки. Для уменьшения газовыделения добавляют специальные добавки, в частности этиловый спирт [221]. Катодный продукт наряду с металлом и кислородом содержит обычно азот, водород и углерод. Результаты количественного анализа показывают загрязнение катодного осадка растворителем или продуктами его разложения, но не образование соединений определенной стехиометрии [1077]. При термической обработке катодного осадка происходит уменьшение объема и перестройка кристаллической решетки, в результате чего слои растрескиваются и осыпаются, и лишь в случае тонких слоев оказывается достаточно поверхностных молекулярных сил сцепления для сохранения прочной связи с подложкой. Для получения покрытий толщиной порядка 1—5 мг/см необходимо многослойное нанесение продукта [1060]. [c.156]

    Для получения качественного покрытия на металле требуется в первую очередь обеспечение максимальной адгезии между металлом и покрытием. Прочное сцепление (высокая адгезия) препятствует образованию новой фазы (продуктов коррозии) на границе металл — покрытие при малой силе сцепления благодаря проницаемости защитного слоя для воды, кислорода, ионов хлора, сульфата и других агрессивных агентов на границе металл— покрытие образуются продукты коррозии, имеющие больший объем, чем объем исходного металла. Поэтому в защитном покрытии возникают внутренние напряжения и происходит нару-щение его сплошности. Сравнительно быстро продукты коррозии образуются при применении покрытий, наносимых из растворов (краски, лаки). В последнем случае образование защитной пленки происходит при одновременном испарении органического растворителя, что неизбежно приводит к появлению в пленке пор, через которые к металлу проникают агрессивные компоненты среды и начинается процесс ржавления. С повышением толщины слоя изолирующего покрытия, если последнее нанесено из расплава, вероятность образования пор уменьшается. Кроме того, с увеличением толщины слоя покрытия возрастает сопротивление для прохождения воды, кислорода к металлу. Поэтому для защиты трубопроводов примеляют относительно толстые изолирующие слои битумной мастики, порядка 3—9 мм. [c.94]

    Поскольку теоретическое значение удельной энергии невозможно реализовать на практике, то интересно привести данные по практически реализованным величинам. Для элемента Лекланше практически реализуется около 25% от теоретического значения удельной энергии, а для свинцового, никель-кадмиевого и цинк-серебряного аккумуляторов соответственно 14, 15 и 20% [10]. Таким образом, при реализации систем литий — фториды или хлориды металлов переходной группы можно ожидать практических значений удельной энергии 200—400 вт-ч1кг. Помимо значительного напряжения и высокой удельной энергии элементы со щелочными металлами на основе органических растворителей должны обладать и некоторыми другими весьма существенными преимуществами. Использование органических растворителей позволяет значительно расширить температурный диапазон работы источников тока по сравнению с водными электролитами,, прежде всего, в сторону отрицательных температур, вплоть до —50°. Кроме того, рассматриваемые системы могут быть реализованы только в виде герметичных источников тока, как требуется защита электродов и электролитов от атмосферы поэтому ни в процессе эксплуатации, ни при зарядке не должно происходить выделения газообразных продуктов, т. е. должен достигаться потенциал разложения растворителя. [c.50]

    Во многих лабораториях ведут разработки элементов с катодом на основе хлорида меди СиСЬ. Последняя имеет положительное значение потенциала, достаточно высокую емкость и невысокую цену. М. Айзенберг [6] сообщил о разработке элемента с окислителем СиС1г, электролитом ЫАЮЦ в апротонном растворителе, имеющего рабочее напряжение 2,2 В и удельную емкость до 165 Вт-ч/кг. Хранение элемента в течение года при комнатной температуре практически не изменило его емкости. При 54°С емкость элемента после хранения в течение 90 сут снизилась на 12%. К недостаткам хлоридов и фторидов металлов следует отнести их заметную растворимость в органических растворителях. [c.56]

    Выбор электролита зависит от рода исследуемых сплавов и температурного интервала, в котором будут проводиться Изменения. В качестве электролита можро применять воду [95], безводные органические растворители [85, 162], расплавы галогенидов щелочных металлов [5, 39, 132, 149], расплавы ацетатов некоторых металлов [94], твердые соли с чисто ионной проводимостью [175] и стекло [1, 2, 17, 47, 78]. Расплавы солей, используемые в качестве электролита, следует готовить очень тщательно, особенно если эти соли гигроскопичны. Если в расплаве остаются следы влаги, возможно образование кислородных соединений галогенов, которые отрицательно влияют на воспроизводимость результатов измерений. Наиболее пригодны расплавы солей с низкими температурами плавления и высокими температурами кипения. Однако в электролите не должны присутствовать катионы металла более благородного, чем испытуемый металл M (i). При составлении цепи следует учитывать положение металлов-компонентов сплава в ряду напряжения металлов для расплавов солей [9]. (Эти ряды значительно отличаются от ряда напряжений металлов для водных растворов.) Чтобы избежать возникновения термоэлектродвижущих сил, все проводники в цепи должны быть выполнены из одного и того же металла. Электролитическую ячейку следует поместить в металлический блок [148] или баню с расплавом металла [35] или соли [25], которые в свою очередь помещают в электрическую печь с большой тепловой инерцией. Этим путем более удобно поддерживать постоянную температуру на стыке электродов с соединительными проводами последние могут быть вольфрамовыми [143], молибденовыми [156] или платиновыми [117.  [c.49]

    Отвержденные фенолоформальдегидные смолы обладают высокой стойкостью к действию воды и органических растворителей, кислот (исключение составляют окислительные кислоты азотная, хромовая, серная — концентрацией свыше 80 %) и растворов многих солей. Щелочные среды, особенно гидроксиды щелочных металлов, вызывают химическую дестругащю фенолоформальдегидных смол и защитных покрытий на их основе. Фенолоформальдегидные смолы и композиции на их основе можно эксплуатировать в зависимости от среды при температурах до 90— 150 °С. Вообще они сохраняют прочность, твердость и стеклообразное состояние до температур 250—280 °С. При температуре выше 280 °С начинается деструкция смол. Чистые отвержденные фенолоформальдегидные смолы обладают высокой хрупкостью, разрушающее напряжение при изгибе равно 35—100 МПа. Для снижения хрупкости фенолоформальдегидные смолы пластифицируют, например, каолином, жидкими каучуками (нитрильными, бутилкаучуком, олигомерами изобутилена), полиамидами. Ненаполненные смолы применяются [c.90]

    В качестве растворителя используют воду. При исследовании органических соединений часто применяют органические растворители или их смеси с водой. К ним относятся спирты (в первую очередь метанол, этанол, а также пропанол и некоторые гликоли и их производные), ацетон и диоксан. В качестве неводных растворителей применяют также уксусную кислоту, ацетонитрил, диметилформамид, концентрированную серную кислоту, жидкий аммиак и расплавленные соли. Подходящим фоном для этих сред являются соли тетралкиламмония и некоторые соли лития. В часто используемом растворителе метанол — бензол (1 1) в качестве фона применяют 0,1 н. НоЗО , Ь1С1, ЫОН или Ь ОСНд. Органические растворители необходимо особо тщательно очищать, так как они часто содержат примеси, которые в исследуемой области являются источниками анодных или катодных волн. Перенапряжение водорода на ртути очень велико (свыше 1 В), что позволяет восстанавливать на ртутном капельном электроде даже ионы щелочных металлов. Применение солей тетралкиламмония в качестве фона дает возможность работать в области напряжений от —2,6 до -Ь0,4 В (н.к.э.). При потенциалах, более положительных, чем Н-0,4 В, пройсходит окисление и переход ртути в раствор. [c.124]


Смотреть страницы где упоминается термин Ряд напряжений металлов в органических растворителях: [c.124]    [c.168]    [c.7]    [c.259]    [c.95]    [c.118]   
Смотреть главы в:

Электрохимия Том 9 -> Ряд напряжений металлов в органических растворителях




ПОИСК





Смотрите так же термины и статьи:

Металлы ряд напряжений

Органические металлы

Растворители органические



© 2024 chem21.info Реклама на сайте