Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скорость окисления катализаторов

    Экспериментальные данные по скорости окисления катализатора № 117 [c.146]

    Скорость окисления катализатора можно выразить уравнением  [c.146]

    СКОРОСТЬ ОКИСЛЕНИЯ КАТАЛИЗАТОРОВ [c.151]

    При большой скорости окисления катализатор нагревается, что смещает равновесие реакции в сторону распада серного ангидрида, поэтому в промышленно сти применяют отвод теплоты от катализатора. В лаборатории можно применять значительные количества катализатора, заполнив им трубку, пропускать газ с небольшой скоростью. В этих условиях перегрева катализатора не происходит и можно создавать оптимальный температурный режим окисления с большим выходом серного ангидрида. Так, при 450°С степень контактирования сернистого газа доходит до 97,6%. [c.105]


    В табл. 120 показано влияние температуры на скорость окисления одного и того же сорта парафина в присутствии катализатора. [c.450]

    Зависимость скорости окисления парафина от температуры (катализатор 0,25% КИпО ) [c.451]

    При проведении первой стадии важно рассчитать время контактирования т, напряженность катализатора рн, скорость окисления аммиака и и объемную скорость Уоб в условиях контакта. [c.159]

    Активность катализатора определяет собой степень ускорения данной реакции по сравнению с протеканием ее без катализатора при тех же условиях. Так, например, скорость окисления сернистого газа на платиновом катализаторе при / = 500—600° С увеличивается в сотни тысяч раз ( 10 раз) по сравнению со с1<оростью этого процесса, протекающего без катализатора, на ванадиевых — несколько меньше, а на железных—еще меньше реа.кция окисления аммиака до окиси азота без катализаторов ничтожно мала, в присутствии же платино-радиевых катализаторов она ускоряется в миллионы раз и заканчивается в десятитысячные доли секунды если реакция синтеза аммиака при 450° С и давлении 300—500 атм достигает равновесного состояния без катализатора через несколько часов, то в присутствии одних катализаторов при тех же условиях равновесие наступает через несколько минут, в присутствии других — через несколько секунд, в присутствии третьих процесс синтеза заканчивается и доли секунды. [c.230]

    Пример 3. Константа скорости окисления сернистого газа в серный ангидрид, вычисленная по экспериментальным данным проведения этой реакции на платиновом катализаторе, при 525° С, оказалась равной 0,48, а при 665°—1,90. Подсчитать энергию активации процесса окисления на этом катализаторе и температурную зависимость константы скорости. [c.237]

    По уравнению (П7а) подсчитываем постоянную С для выражения температурной зависимости константы скорости окисления сернистого газа на изучаемом платиновом катализаторе  [c.237]

    Из этих данных получаем обш,ую температурную зависимость константы скорости окисления ЗОг на данном платиновом катализаторе (по уравнению 1176)  [c.237]

    Пример 4. Серия опытов по изучению скорости окисления сернистого газа на платиновом катализаторе показала, что константа скорости этого процесса при 665°С равна 3,36 Подсчитать постоянный множитель Ка в уравнении Аррениуса, если энергия активации этой реакции на данном катализаторе равна 15 ккал моль. [c.238]


    Процесс совместного производства синтетических жирных кислот и натрийалкилсульфатов методом непрерывного окисления жидких парафинов. Сущность данного метода заключается в непрерывном окислении жидких парафинов в присутствии катализатора — нафтената марганца. Для обеспечения максимального выхода спиртов процесс ведется при относительно низкой температуре и ограниченном времени пребывания (а вместе с тем и глубины окисления) исходных парафинов в зоне реакции. Для понижения скорости окисления спиртов в качестве окисляющего агента используется азотокислородная смесь с содержанием кислорода 4—5%. В выбранном режиме окисления получаемые высшие жирные спирты представлены смесью первичных и вторичных спиртов. Однако в отличие от процесса прямого окисления парафиновых углеводородов в присутствии борной кислоты менее жесткие условия окисления рассматриваемого варианта обеспечивают более благоприятный состав смеси спиртов, в которой содержание первичных спиртов составляет 45—50%. [c.172]

    Для этих реакций важно знать зависимость скорости окисления от температуры, давления, концентрации реагентов и присутствия катализатора. [c.132]

    Скорость окисления парафинов нормального строения увеличивается с ростом их молекулярного веса метан — наиболее трудно окисляемое соединение этого ряда. Несмотря на то что окисление (без катализаторов) метана начинается уже около 400 °С, процесс приобретает заметную скорость лишь при температуре около 575 °С, тогда как гомологи метана окисляются при более низкой температуре. [c.134]

    В присутствии твердых катализаторов (типа металлов или окислов металлов) скорость окисления заметно возрастает. Но при этом [c.134]

    Результаты экспериментов показывают, что фактором, опреде-ляющим скорость окисления в целом, является адсорбция кислорода она протекает медленнее, чем остальные реакции. С другой стороны, одновременное образование окиси этилена и СОа зависит от адсорбционной способности этилена и кислорода, которые образуют окись этилена в результате взаимодействия на поверхности катализатора. [c.165]

    В присутствии галоидов (С1.2, ВГз) или кислорода, которые играют роль промоторов, скорость нитрования становится больше. При гетерогенном катализе (на твердых катализаторах) велика также скорость окисления. [c.298]

    При наличии в системе ГХЦ катализатор оставался активным длительное время. Активирующий эффект ГХЦ проявляется как при введении его в начале процесса, так и при добавлении к практически неактивному катализатору, который после введения ГХЦ вновь становится активным. Между алюминийорганическим соединением и активатором необходимо сохранять такое соотношение, чтобы скорость восстановления до преобладала над скоростью окисления в Реактивированный катализатор полностью теряет свою активность, если весь ванадий переходит в трехвалентное состояние, но после введения новой порции алюминийорганического соединения вновь становится активным в процессе сополимеризации. В присутствии активаторов образуются сополимеры с меньшей молекулярной массой, что, вероятно, связано с увеличением концентрации активных центров. [c.301]

    Поскольку концентрация активного комплекса составляет лишь малую долю от концентрации исходных веществ, даже ничтожное количество катализатора часто меняет кинетические свойства системы. Например, для заметного изменения скорости окисления сернистокислого натрия в водном растворе достаточно Ю- г-экв катализатора (сернокислой меди) на 1 л раствора. [c.272]

    Необходимо отметить, что процесс, обратный первой стадии (адсорбции углеводорода) приводит к изомеризации (миграции двойной связи), что и наблюдали на опыте, а скорость восстановления катализатора, измеренная в отсутствие кислорода, достаточна для объяснения скорости окислительной дегидрогенизации [81]. Но эти модели не дают ключа к решению вопроса о происхождении различий в селективности у разных окислов, т. е. эти модели не раскрывают причин, заставляющих окислы отдавать предпочтение одному из возможных реакционных путей (через альдегид или диен). Начальный выход первичных продуктов окисления никогда не равен 100%, и всегда присутствует какое-то количество продуктов деструкции. Этот новый тип селективности связан с легкостью десорбции первичных продуктов, которые очень часто адсорбируются сильнее, чем олефин, как показывает их влияние на кинетику реакции. В экстремальных случаях не десорбируется ни одно из промежуточных соединений между олефином и СО или СОг, и единственной реакцией, которую удается наблюдать, является полное сгорание, и притом не только на неселективных катализаторах, но и на селективных, таких, как В1— —Мо—О (например, циклопентен) [83]. По той же причине при работе со всеми этими катализаторами следует избегать микропористости, поскольку из-за медленной диффузии в порах удлиняется время контакта, что приводит к глубокому разрушению желательных продуктов. [c.165]


    Представляется целесообразным оценить возможные перегревы зерен катализатора при регенерации, так как этот эффект может сказаться на активности и механической прочности катализатора. При рассмотрении этого вопроса надо отметить следующее. При протекании процесса нри высоких температурах и значительных коксоотложениях скорость окисления настолько повышается, что процесс начинает тормозиться подводом кислорода к поверхности окисления [1]. В атом случае можно ожидать заметных перегревов. Поэтому в дальнейшем рассмотрим процесс, тормозящийся подводом кислорода к внутренней поверхности катализатора. [c.296]

    Промотирование оксида железа щелочными л таллами снижает прирост массы в конце процесса регенерации (см. рте. 2.23), а следовательно, увеличивает скорость окисления катализатора [105] и изменяет соотношение скоростей выгорания углерода и окисления катализатора в процессе регенерации. Изменение соотношения скоростей выгорания углерода и окисления катализатора, как было показано для железокалиевой системы [107], может быть обусловлено возрастанием энергии связи кислорода катализатора. Поэтому высказано предположение [c.43]

    Помимо ясно выраженного эффекта независимости удельной активности от строения поверхности платины обращает на себя внимание различная активация кислородом частиц платины, отличающихся по дисперсности. Для высокодисперсных частиц (у=1) начальная скорость для окисленных образцов в 4 раза выше, чем для образцов с у = 0,4. Для кристаллических слоев платины окисление сказывается слабо на дегидрировании СбН12. При этом различие не связано со скоростями окисления катализаторов с и у=0,4, так как окисление проводили при 400° до равновесного состояния, отвечающего монослою состава— = 1 1. Далее окис- [c.166]

    Окисление пропилена в присутствии СиО на Si — реакция первого порядка по отношению к кислороду и нулевого порядка по отношению к пропилену [69], поэтому скорость окисления возрастает с увеличением концентрации кислорода [64]. Селективность образования акролеина повышается с ростом концентрации пропилена [64—66]. Водяной пар является лучшим разбавителем по сравнению с пропаном или азотом (при конверсии 6% оптимальный выход 70%) [70—71]. Образование СОа уменьшается при введении водяного пара. Тем самым повышается и селективность оптимальная концентрация пропилена будет 10% [72]. Лучше всего действует добавка 40% водяного пара (при 340—400 °С), выше этого цоказателя катализатор становится нестойким [73]. [c.97]

    Значительное увеличение скорости поглощения кислорода дизельным топливом в контакте с различными горными породами было установлено экспериментально при окислении на газометрической установке [74]. Приведенные на рис. 2.10 кинетические кривые окисления дизельного топлива указывают на увеличение в десятки раз скорости поглощения кислорода в контакте с некоторыми горными породами. Каталитическая активность горных пород связана с наличием в них активных микропримесей. Для практических целей склонность горных пород к гетерогенному активированию окисления топлив предложено определять методом сравнения, основанным на непосредственном-определении скорости окисления топлива в контакте с испытуемой горной породой и эталонным катализатором, например со сталью Ст. 3. В качестве критерия такой оценки предложен коэффициент каталитической активности [74], определяемый по выражению [c.59]

    Влияние катализатора может сказываться не только на скорости окисления и длительности индукционного периода, но и на внутристадийном превращении одних продуктов окисления в другие, а также на характере конечных продуктов [101]. По некоторым данным, металлы катализируют окисление в основном в тех случаях, когда они образуют соли с кислотами. Чаще всего это происходит в присутствии воды и кислорода воздуха. Каталитическое действие металла прекращается, если он покрывается защитной пленкой, создаваемой продуктами окисления. Большая часть исследователей считает, что основную роль в катализирующем действии солей оказывает катион [96]. При этом, однако, соли одного и того же металла, но разных кислот могут обладать неодинаковой катализирующей активностью, т. е. активность солей может зависеть не только от катиона, но и от аниона. Анион может и не оказывать принципиального действия, а может влиять, например, на растворимость соли в масле и таким образом косвенно воздействовать на эффективность металлического катализатора. [c.77]

    Акти]июсть и стабильность промотированных щелочью железных катализаторов при работе ниже 7 ат можно повысить путем предварительной обработки окисью углерода с образованием карбидов железа (Хэгга и гексагонального) [2, 27g]. Благоприятный эффект предварительного карбр1Дйрования железных катализаторов, по-видимому, непосредственно связан со значительным уменьшением скорости окисления FejG водяными парами по сравнению со скоростью окисления Fe. При проведении синтеза под давлением выше 7 ат ьсе карбиды (Хэгга, гексагональный и цементит) окисляются быстрее восстановленного железа. Этот процесс сопровождается быстрым падением активности (см. рис. 2). Предварительное карбидирование кобальтовых катализаторов резко снижает их активность. Кобальтовые катализаторы по сравнению с не-карбидированными железными очень медленно окисляются водяными парами в условиях синтеза. [c.522]

    Тепловой эффект неполного окисления катализатора до РезО ниже, чем для полного окисления до Ре20з (табл. 3.1). Таким образом, предотвращения перегрева можно достичь не только снижением концентрации кислорода и рациональной организацией потоков, но и путем неполного окисления железа катализатора. Последнее возможно при относнтельно высоких температурах регенерации, поскольку в этом случае скорость окисления кокса выше скорости окисления металла. [c.79]

    Скорость окисления возрастает при повышении содержания рас-творенкого кислорода (т. е. при увеличении давления) и улучшении эффекткв юсти смешения воздуха (или кислорода) с расплавленным парафином. Процесс проводят при давлении от 1 до 21 ат в колоннах, через нижнюю часть которых барботирует воздух, диспергированный пористыми керамическими плитами. Условия реакций могут изменяться в широких пределах. Иногда применяют растворимые катализаторы — стеараты цинка и марганца, нафтенат кобальта и, чаще всего, перманганат ка.гия (около 0,1%). [c.155]

    На молибденовом катализаторе (чистая М0О3 или в смеси с УаОа) скорость окисления меньше, поэтому для достижения достаточной степени конверсии толуола в бензальдегид необходима более высокая температура (459—500 °С). Однако большую часть бензальдегида, широко применяемого в промышленности красителей, пока еще получают гидролизом хлористого бензилидена. [c.173]

    При распаде ROOH под действием катализатора на свободные радикалы (константа скорости ki), и на молекулярные продукты (константа скорости Ам) получается выражение для скорости окисления в стационарном режиме [c.201]

    Указывается на сложный характер зависи м0(сти скорости окисления от начального содержания кожа на катализаторе [33, 44, 108, 117], что объясняют с различ1ных точек зрения. Г. М. Панченков и Н. В. Голованов [44], С. В. Адельсон и [c.76]

    А. Я. Заитова [43, 51] связывают различие во влиянии этой величины на регенерацию катализатора с характером осуществляемого кинетического режима. По их данным, в кинетической области относительная скорость окисления кокса не за1висит от содержания кокса на катализаторе. [c.76]

    При протекании процесса при высоких температурах скорость окисления повышается и процесс начинает тормозиться подводом кислорода к поверхности окисления [44]. Именно в таком случае и можно ожидать сколько-нибудь заметных перегревов. В связи с этим рассмотрим в дальнейшем именно такой процесс, тормозящийся транспортом кислорода к внутренней поверхности катализатора. При средней закаксован-Бости акорость потребления кислорода по реакции окисления соизмерима с возможной окоростью транспорта, поэтому ки- [c.121]

    Ведение ярацесса регенерации при температуре ниже 540° С приводиг к уменьшению скорости окисления кокса и получению катализатора на выходе из регенератора с повышенным содержанием кокса. [c.27]

    Как видно, уже в присутствии 0,016 моль/л сульфида натрия скорость окисления меркаптида уменьшается вдвое и при дальнейшем увеличении концентрации не изменяется. Следовательно, попадание сероводорода в щелочной раствор катализаторного комплекса приводит к ингибированию каталитического окисления мефкаптидов и этот факт следует учитывать при разработке. Ингибирование, по-видимому, связано с образованием координацонно-насыщенных комплексов между катализатором, органическим растворителем и сульфидом натрия (или продуктами его окисления) [86]. [c.59]

    В таком случае при достаточной скорости окисления катиона активность катализатора будет определяться значением и. Действительно, мы знаем, что наиболее активными гомогенными катализаторами являются ноны марганца и кобальта, у которых наиболее отрицательный окислительно-восстановительный потенциал. Видимо, этот принцип можно расиространить и на катализаторы, у которых электроны решетки не обобщены. Как известно, кобальтсодержащие катализаторы, в том числе и безванадиевые, обладают высокой активностью в процессах с окислением связи С — Н. [c.28]


Смотреть страницы где упоминается термин Скорость окисления катализаторов: [c.50]    [c.200]    [c.158]    [c.10]    [c.282]    [c.282]    [c.324]    [c.65]    [c.201]    [c.76]    [c.77]    [c.129]   
Смотреть главы в:

Теоретические основы получения бутадиена и изопрена методами дегидрирования -> Скорость окисления катализаторов




ПОИСК





Смотрите так же термины и статьи:

Влияние температуры на скорость окисления двуокиси серы на ванадиевых катализаторах

Скорость окисления

Скорость от катализатора



© 2025 chem21.info Реклама на сайте