Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Модель взаимодействия субстрата с ферментом

Рис. 9-19. Схематическая модель взаимодействия между субъединицами аллостерического фермента. У многих аллостерических ферментов центр связывания субстрата и центр связывания модулятора расположены в разных субъединицах-соответственно каталитической (С) и регуляторной (К). Сообщение о присоединении положительного модулятора М к его специфическому центру в регуляторной субъединице передастся посредством конформационных изменений каталитической субъединице, которая становится активной и ее сродство к связывающемуся с ней субстрату 8 новыщается. После отделения модулятора М от регуляторной субъединицы фермент вновь переходит в неактивную или менее активную форму. Рис. 9-19. <a href="/info/1585918">Схематическая модель</a> <a href="/info/1387194">взаимодействия между субъединицами</a> <a href="/info/70324">аллостерического фермента</a>. У многих <a href="/info/1349731">аллостерических ферментов центр</a> <a href="/info/100571">связывания субстрата</a> и <a href="/info/101606">центр связывания</a> модулятора расположены в <a href="/info/1532036">разных субъединицах</a>-соответственно каталитической (С) и регуляторной (К). Сообщение о присоединении <a href="/info/1402605">положительного модулятора</a> М к его специфическому центру в <a href="/info/103082">регуляторной субъединице</a> передастся посредством <a href="/info/2999">конформационных изменений</a> <a href="/info/100178">каталитической субъединице</a>, которая становится активной и ее сродство к связывающемуся с ней субстрату 8 новыщается. <a href="/info/1660286">После отделения</a> модулятора М от <a href="/info/283438">регуляторной субъединицы фермент</a> вновь переходит в неактивную или менее активную форму.

Рис. 3.11. Схематические изображения моделей взаимодействия субстрат - фермент в тканевых биосенсорах. О - субстрат Е-активный фермат 1р - транспортный белок. Рис. 3.11. <a href="/info/376711">Схематические изображения</a> <a href="/info/233732">моделей взаимодействия субстрат</a> - фермент в <a href="/info/1900054">тканевых биосенсорах</a>. О - субстрат Е-активный фермат 1р - транспортный белок.
    Аллостерическая регуляция представляет собой вариант связывания эффекторов с ферментом в области аллостерического центра (сравните действие неконкурентных ингибиторов, действующих вне зоны активного центра). Подобная регуляция может быть гомотроп-ной, если молекула субстрата, взаимодействуя с ферментом, изменяет его сродство к молекулам того же субстрата гетеротропной, если сродство к субстрату изменяется при взаимодействии фермента с молекулой, не похожей на субстрат. Гомотропные и гетеротропные эффекторы могут быть активаторами и ингибиторами. На базе симметричной модели 1) аллостерический активатор связывается с Л-конформером, стабилизируя это состояние. Следовательно, субстрат будет иметь увеличенное сродство к ферменту (положительная кооперативность)  [c.76]

Рис. VII. . Модель взаимодействия молекул субстратов с помощью фермента. Рис. VII. . <a href="/info/132006">Модель взаимодействия</a> <a href="/info/1527204">молекул субстратов</a> с помощью фермента.
    Модели взаимодействия фермента с субстратом а — модель "жесткой матрицы" по Э. Фишеру б — модель "перчатка—рука" по Д. Кошланду [c.99]

    В согласии с механизмом (4.40) субстратоподобный ингибитор действительно вытесняет из активного центра несколько молекул воды, как это было обнаружено при рентгеноструктурном анализе кристаллического химотрипсина [123]. Однако этот механизм не согласуется с данными по влиянию среды на гидрофобное фермент-субстратное взаимодействие (см. 4 этой главы). Кроме того, механизм (4.40) противоречит тому, что двойной выигрыш свободной энергии экстракции реализуется лишь в переходном состоянии химической реакции [см. уравнение (4.39)], в то время как в комплексе Михаэлиса вклад гидрофобного фермент-субстратного взаимодействия меньше [см. уравнение (4.29)]. Иными словами, в химотрипсиновом катализе не вся потенциальная свободная энергия сорбции, которую предполагает модель (4.40), равная 2АСэкстр, реализуется в виде прочного связывания субстрата с ферментом. Из диаграммы, представленной на рис. 44, видно, что в комплексе Михаэлиса (или ацилферменте) реализуется в виде свободной энергии связывания E-R лишь инкремент свободной энергии сорбции, отражающий перенос субстрата из воды в неводное окружение (в среду белковой глобулы), равный АО кстр [см. также уравнение (4.29)]. Для объяснения этих фактов следует допустить, что гидрофобное фермент-субстратное взаимодействие идет в две стадии 1) образование фермент-субстратного комплекса протекает по механизму (4.19), который не противоречит данным по солевому эффекту (на их основании он был и предложен), и термодинамические закономерности его согласуются с уравнением (4.29). Этот механизм также предполагает вытеснение нескольких молекул воды из [c.155]


    Одной из самых ранних моделей взаимодействия фермента с субстратом была модель ключа и замка , иллюстрируемая рис. 25.8. На этом рисунке показано, что форма субстрата точно соответствует определенному участку структуры белка (активному центру), специально приспособленному для взаимодействия с данным субстратом. Когда субстрат связывается с ферментом, происходит катализируемая реакция, после чего продукты реакции отделяются от фермента. Очевидно, такая модель действия фермента имеет много общего с моделями действия гетерогенных катализаторов, обсуждавшимися в разд. 13.7. Различие заключается только в том, что действие фермента более специфично. [c.453]

Рис. 6.10, Взаимодействие субстратов с ферментами согласно модели клюЧ Замок. Активный центр фермента сам по себе комплементарен по форме субстрату. Рис. 6.10, <a href="/info/325994">Взаимодействие субстратов</a> с ферментами согласно <a href="/info/168947">модели клюЧ Замок</a>. <a href="/info/99728">Активный центр фермента</a> сам по себе комплементарен по форме субстрату.
    Можно рассматривать с известным приближением такие системы, как модели неизмеримо более гибких и пластичных природных катализаторов — ферментов. По-видимому, слишком строгое и неизменное следование кодовым правилам, определяемым жесткой геометрией взаимодействующих частиц, настолько ограничивает воз.можности реакций, что биологическая эволюция выдвинула на первый план именно белковые катализаторы, обладающие громадным числом конформационных возможностей, и связала их с такими субстратами, молекулы которых тоже в известной мере способны к деформациям. От этого кодовые требования стали менее строгими, а для ферментов открылись новые пути повышения активности и специфичности действия. [c.323]

    В свое время Фишер предложил модель ключ — замок для рассмотрения фермент-субстратного взаимодействия. Фермент и субстрат обладают жесткими структурами, причем фермент подогнан к субстрату как замок к ключу. Ряд фактов противоречит такой модели — взаимодействие фермента с субстратом имеет, по-видимому, не статический, а динамический характер. Кошланд предложил модельную теорию индуцированного структурного соответствия фермента и субстрата. Перечислим исходные положения этой теории, задачи которой состояли прежде всего в объяснении специфичности ферментов, катализируюхцих реакции переноса связи [c.189]

    Иными словами, термодинамическая предпосылка механизма сближения и ориентации реагирующих групп X и Y в комплексе XE-RY состоит в том, что замораживание молекулы субстрата (или также некоторых каталитических фрагментов активного центра) идет за счет свободной энергии сорбции E-R. Чтобы показать это, учтем, что образование фермент-субстратного комплекса можно представить в виде модели (см. 6 гл. I), в которой на первом этапе происходит остановка поступательного движения субстрата с одновременным замораживанием вращательных и некоторых других степеней свободы. Лишь после этого в собственном акте сорбции может реализоваться выигрыш свободной энергии гидрофобного и других видов взаимодействий (если они существуют), которую обозначим АО .внут р- Таким образом получим [c.56]

    Специфичность функциональных мицелл, состоящих из нуклеофильного ПАВ, так же как и фермента, определяется гидрофобным взаимодействием между субстратной группой К и катализатором. Это следует из данных на рис. 29, где отложена зависимость относительных значений константы скорости второго порядка ацилирования того и другого катализатора от гидрофобности группы К в молекуле сложного эфира. В качестве показателя гидрофобности приняты значения парциальных коэффициентов распределения группы Я между водой и октанолом (см. раздел Экстракционная модель в гл. I, а также рис. 25). Из наблюдаемых в опыте линейных зависимостей следует, что для того и другого катализатора справедливо утверждение чем гидрофобнее субстрат, тем быстрее протекает химическая реакция. [c.120]

    Фермент инвертаза катализирует превращение дисахарида сахарозы в инвертированный сахар. Когда концентрация инверта-зы равна 3 10 " моль/л и концентрация сахарозы 0,01 моль/л, инвертированный сахар образуется со скоростью 2-10 моль-л с . При удвоении концентрации сахара скорость образования инвертированного сахара также удваивается. Основываясь на известных вам представлениях о модели взаимодействия фермент—субстрат, оцените, насколько велика доля фермента, связанного в комплекс. Поясните свой ответ. Добавление другого сахара инозита замедляет образование инвертированного сахара. Предложите механизм этого явления, [c.470]

    Взаимодействие фермента с субстратом может произойти только при соответствии формы активного центра фермента со структурой молекулы субстрата, т. е. при их высоком сродстве. Существует несколько моделей, объясняющих механизм взаимодействия субстрата с ферментом. Так, согласно модели Э. Фишера, активный центр фермента имеет жесткую структуру и точно соответствует структуре молекулы субстрата. Молекула субстрата подходит к активному центру фермента, как ключ к замку (рис. 37, а). В соответствии с моделью Д. Кошланда перчатка—рука , активный центр фермента не имеет жесткой конфигурации и создается субстратом в момент их взаимодействия аналогично перчатке, которая приобретает форму руки (рис. 37, б). [c.98]


    В случае фермента химотрипсина в качестве конкурентных ингибиторов часто выступают оптические антиподы асимметрических субстратов. Разница между оптическими изомерами подразумевает взаимодействие между ферментом и субстратом в трех точках, как это изображено схематически на рис. 123, на котором группы Р и р субстрата присоединены к поверхности молекулы фермента группами А и В, а па чувствительную связь К воздействует группа С. В случае оптического антипода субстрата взаимодействующие группы Р и Q точно так же могут быть соединены с группами А и В, однако группа В теперь слишком далеко удалена от воздействующей на нее функциональной группы С. Согласно этой модели, можно было ожидать, что константы диссоциации комплексов фермент-субстрат и фермент-ингибитор почти одинаковы. Поскольку экспериментально доказано, что константы диссоциации многих комплексов фермент-ингибитор соответствуют значениям субстрата, в этом случае можно [c.326]

    В других случаях в качестве компартментов рассматриваются взаимодействующие друг с другом вещества (или другие компоненты биосистемы), находящиеся в одном и том же объеме. Тогда кинетика реакций также описывается с помощью компартментальных моделей, а различным компартментам отвечают количества или концентрации различных веществ в одной и той же пространственной области. Так, в тканях и жидкостях тела происходят многочисленные реакции между химическими веществами, и участвующие в них субстраты, ферменты и продукты могут рассмат риваться как различные компартменты. В моделях наземных экологических систем часто делается допущение, что все исследуемые процессы происходят на некоторой ограниченной территории (иногда, как в классической модели экологических систем — модели Вольтерра, такое допущение делается неявно), и в качестве компартментов выступают численности или плотности различных видов или возрастных групп животных. [c.160]

    Из полученной эмпирической модели следует, что главные и квадратичные эффекты наблюдаются для факторов pH, концентрации ФДА и концентрации фермента ЦП. Кроме того, существует статистически значимый эффект взаимодействия факторов концентрации субстрата (ФДА) и фермента (ЦП). С точки зрения аналитической химии это означает, что для определения фермента концентрацию субстрата следует контролировать как можно более строго. [c.509]

    Механизм, с помош,ью которого ферменты реализуют этот принцип, можно раскрыть в самом общем виде на модели (рис. 17, /). Пусть системе а присущи какие-то определенные значения величин AG и ДО внутр (характеризующих, соответственно, сорбцию группы R на ферменте и последующее химическое взаимодействие X и Y). Для другого субстрата (система б), содержащего в молекуле два фрагмента RhR, способных сорбироваться на ферменте, потенциальная свободная энергия сорбции в принципе должна быть термодинамически более благоприятной. С другой стороны, образование фермент-субстратного комплекса в этом случае явно сопряжено с гораздо большими [c.58]

    Если мы выберем модель одноточечного связывающего взаимодействия, различие в константах связывания двух энантиомеров с хиральным связывающим центром можно рассматривать как следствие того, что это взаимодействие заставляет один из энантиомеров принимать невыгодную для него конформацию. К этому же объяснению часто прибегают при рассмотрении взаимодействий фермент—субстрат для объяснения субстратной специфичности последнего. [c.74]

    В последовательной модели предполагается, что фермент приобретает каталитически активную конформацию только в результате взаимодействия с субстратом (рис. 16.10). Если фермент состоит из нескольких субъединиц, то конформационное изменение одной из них, вызванное субстратом, последовательно передается другим субъединицам и облегчает им связывание добавочных молекул субстрата. Возможно образование несимметричных олигомеров (на рис. 16.10 это тетрамеры) с субъединицами, имеющими разную конформацию. Присутствие активаторов способствует переходу в активную форму, а отрицательные эффекторы его затрудняют. [c.489]

    Что касается природы сорбционного взаимодействия фермент — субстрат, то следует подчеркнуть, что с точки зрения термодинамики образование водородной связи (как это предполагает модель Хендерсона, см. рис. 32) представляется вполне разумным, поскольку энтальпия ее в аполярной среде достаточно велика —(4—6) ккал/моль, т. е. —(16,8—25,2) кДж/моль) [59, 72], чтобы компенсировать необходимые для реакции потери энтропии при внутримолекулярном замораживании в ацилферменте вращательного движения субстратного остатка. [c.138]

    Рассмотренные выще механизмы способны описывать многие сложные эффекты, и кинетическое уравнение может иметь очень сложную форму. Но в общем случае концентрация [ЕЗ] не может возрастать быстрее, чем растет [3]. Однако при некоторых экспериментальных условиях субстраты или ингибиторы оказывают большее влияние на концентрацию комплекса. Другими словами, получаются 3-образные кривые типа кривой связывания кислорода гемоглобином (разд. 7.13). В особенности это относится к ферментам, играющим важную роль в регулировании обмена веществ. Подобные кооперативные эффекты встречаются в случае ферментов с несколькими активными центрами, поскольку кооперативный эффект подразумевает возрастание сродства второго активного центра к субстрату, когда первый центр занят. Как и в случае гемоглобина, взаимодействия такого типа сопровождаются структурными изменениями. Согласно модели Моно — Шанжо — Ваймана, фермент с несколькими активными центрами может находиться по крайней мере в двух состояниях. Это, вероятно, слишком упрощенная картина, но два является минимальным числом состояний, необходимым для объяснения наблюдаемых эффектов. Предполагается, что в обоих состояниях конформации всех субъединиц одинаковы. Воздействующая на систему молекула (эффектор), которая может быть молекулой субстрата, смещает равновесие в сторону одного или другого из этих двух состояний. Если эффектор смещает равновесие в направлении увеличения скорости реакции, то такой эффектор называется активатором. Если же его действие приводит к снижению скорости реакции, то он называется ингибитором. Как и в случае гемоглобина, воздействие усиливается тем, что одна молекула эффектора оказывает влияние на несколько каталити-21  [c.323]

    Для объяснения этих фактов активный центр химотрипсина представляют обычно (в развитие идей школы Нимэнна [55, 64]) состоящим из участков, комплементарных по отношению к отдельным фрагментам молекулы специфического субстрата [7, 59, 65]. Движущая сила сорбции фрагмента К на ферменте — это гидрофобное взаимодействие. Фактически образование комплекса фермент — субстрат обусловлено тем, что боковая гидрофобная субстратная группа подвергается термодинамически выгодной экстракции из воды в органическую среду белка (см. 4—6 этой главы). Молекулярная модель активного центра была предложена Блоу с сотр. [66] на основании результатов рентгеноструктурного анализа кристаллического химотрипсина (см. рис. 9). Размеры гидрофобной полости в районе активного центра составляют (10—12) х(5,5—6,5)Х(3,5—4) А. Эти размеры достаточны, чтобы вместить боковую цепь триптофана или тирозина, но вместе с тем форма полости делает возможной только лишь одну, строго определенную ориентацию плоскости ароматического кольца. [c.134]

    Крам и др. [168 - 170] получили оптически активные краун-эфиры, в которых различные функциональные группы вводятся в положение 3 1,1 "-би-нафтильного фрагмента, и достигли стереоспецифического связывания молекулы "гостя" благодаря совместному влиянию нового связывающего фрагмента молекулы и хиральной полости. Такое оптически избирательное комплексообразование, по мнению авторов, является моделью взаимодействия субстрата с ферментом и, очевидно, вызовет дальнейшие исследования в этой новой области. [c.83]

    Для увеличения взаимодействия с ферментом можно увеличить размер пептидного субстрата, исходя из известной специфичности КПА в отношении связывания [2, 3]. Одна из моделей фермент-субстратного комплекса, в котором субстратом является КБЗ-А1а-А1а-Туг, показана на рис. 15.3. После того как остаток Туг-248 изменил свое положение, пептидная связь Ala-Ala находится по отношению к нему на расстоянии, при котором возможно образование водородной связи. Ее существование объясняет большую реакционную способность пептидов с NH-группой в ближайшем от конца положении по сравнению с пептидами, у которых в положении Si (рис. 15.9) находится N-метильный [66] или р-аланильный остаток [67]. Остальная часть субстрата располагается в выемке на поверхности КПА, что согласуется с тем, что в контакте с белком могут находиться до пяти аминокислотных звеньев субстрата [31]. Положение бензильного остатка КБЗ-группы вблизи ароматического остатка Phe-279 и атома кислорода карбоксильной группы третьей от конца аминокислоты субстрата вблизи гуанидиновой группы остатка Arg-71 согласуется с известным влиянием заместителей на величину Ки [31]. [c.522]

    Исключительно высокие скорости и степень селективности ферментативных реакций с давних пор интригуют химиков-органиков. Многочисленные предположения, начиная с более чем столетней давности идеи ключ-замок Э.чи-ля Фишера и до более современной ковдегшии взаимоиндуцированного соответствия Кошланда были выдвинуты для объяснения этих явлений. Каковы бы ни были конкретные подробности различных интерпретаций, все они предполагают тот или иной род фиксации субстрата внутри полости активного центра конформационно подвижной молекулы фермента вблизи его реакционноспособных групп. Возникающее в результате взаимодействие между реакционными центрами фермента и реакционноспособной конформацией субстрата считается одной из главных причин высоких скоростей и селективности, свойственных ферментативным реакциям. Дизайн химических структур, пригодных для экспериментального исследования относительной важности различных факторов, определяющих скорости и селективность органических реакций как моделей определенных аспектов ферментативного катализа, был и остается областью, вызывающей напряженное внимание. [c.486]

    Общая схема ферментативной реакции, включает, как мы знаем, образование единого фермент-субстратного комплекса, в активном центре которого и происходит разрыв старых и образование новых связей с появлением продукта. В различных теоретических моделях механизма действия ферментов предлагаются разные способы понижения барьера реакции в фермент-субстратном комплексе. В результате фиксации субстрата на ферменте происходит некоторое снижение энтропии реагентов по сравнению с их свободным состоянием. Само по себе это облегчает дальнейплие химические взаимодействия между активными группами в фермент-субстратном комплексе, которые должны быть взаимно строго ориентированы. Предполагается также, что избыток энергии сорбции, который выделяется при связывании субстрата, не переходит полностью в тепло. Энергия сорбции может быть частично запасена в белковой части фермента, затем сконцентрироваться на атакуемой связи в области образовавплихся фермент-субстратных контактов. Таким образом, постулируется, что энергия сорбции идет на создание низкоэнтропийной энергетически напряженной конформации в фермент-субстратном комплексе и тем самым способствует ускорению реакции. Однако экспериментальные попытки обнаружить упругие деформации, которые могли бы храниться в белковой глобуле фермента, не диссипируя в тепло в течение достаточно длительного времени между каталитическими актами (10 - 10" с), не увенчались успехом. Более того, нужная для катализа взаимная ориентация и сближение расщепляемой связи субстрата и активных [c.126]

    В современной литературе вопросам функционирования олигомерных ферментов уделяется большое внимание. Уже в работах Кошланда, на основе концепции конформационной подвижности белков [53], развитой в принцип индуцированного соответствия , предложена модель работы олигомерных ферментов [104]. При этом используется идея о глобальной передаче конформационных изменений путем межсубъединичных взаимодействий. Модель Кошланда и др. основана на следующих постулатах в отсутствие лиганда белок существует в одной конформации лиганд, связываясь с субъединицей белка, вызывает в ней конформационное изменение, которое может передаваться на соседнюю субъединицу. Для описания связывания необходимо вводить столько констант, сколько существует центров связывания. В некоторых случаях это усложняет интерпретацию наблюдаемых экспериментальных данных. Однако, в принципе, аксиоматика этой модели такова, что кинетика практически любых олигомерных ферментов, для которых справедливо допущение о квазиравновесном связывании субстрата , может быть описана на ее основе. В зависимости от количества субъединиц и схемы взаимодействия между ними, модель допускает спектр состояний как лишенных симметрии, так и имеющих симметрию более низкого порядка по сравнению с максимальной, наблюдаемой у свободного фермента. [c.105]

    Теперь нам остается только заменить абстрактный белок апофермен-том, а гипотетического партнера — субстратом, и мы получим модель взаимодействия фермента с субстратом она позволяет судить, в каких случаях фермент соединяется с субстратом, а в каких случаях — нет. Может быть, поверхность белковой молекулы устроена так, что ей подходят только молекулы субстрата определенного сорта  [c.39]

    Перв1оначальная модель каталитического центра, предложенная Эмилем Фишером, трактовала взаимодействие субстрата и фермента по аналогии с системой ключ — замок . Эта модель, которую иногда называют моделью жесткой матрицы (рис. 8.5), не утратила своего значения для понимания некоторых свойств ферментов, например их способности к строго определенному связыванию двух или большего числа субстратов (рис. 8.6), или для объяснения кинетики насыщения субстратом. [c.79]

    D, превращается в карбоний-ион, меняя свою конформацию с кресла на софу (гл. 1 и гл. 10, разд. А.4.6). Построение моделей для этой системы подтвердило, что субстрат, связывающийся с подцентром D, вынужден принять конформацию софы вследствие неблагоприятных взаимодействия с ферментом, т. е. в данном случае действует классический механизм деформации [22]. Позднее Левитт еще раз проанализировал связывание лизоцима с (NAG) 6, использовав более точные координаты атомов этого фермента и проведя весьма сложные расчеты его взаимодействия с субстратом вместо построения проволочных [c.317]

Рис. 6.11. Взаимодействие субстратов с ферментами согласно модели индуцированного соответстия. При связывании субстрата происходит изменение формы фермента. Активный центр фермента только после присоединения субстрата становится комплементарным ему по форме. Рис. 6.11. <a href="/info/325994">Взаимодействие субстратов</a> с ферментами <a href="/info/771004">согласно модели</a> индуцированного соответстия. При <a href="/info/100571">связывании субстрата</a> <a href="/info/1600957">происходит изменение</a> <a href="/info/188306">формы фермента</a>. <a href="/info/99728">Активный центр фермента</a> только после <a href="/info/101241">присоединения субстрата</a> становится комплементарным ему по форме.
    Наблюдаемому эффекту [уравнение (4.39)] трудно найти объяснение с помощью простой экстракционной модели (схема 4.18), где механизм гидрофобного фермент-субстратного взаимодействия представляет собой лишь перенос субстратного фрагмента Н из воды в невод-ную среду и, следовательно, выигрыш свободной энергии не может превысить величину АОэкстр-, Очевидно, механизм гидрофобного фермент-субстратного взаимодействия более сложный, чем (4.18). По-видимому, гидрофобная полость в активном центре фермента контактирует в свободном состоянии с водой и образование комплекса с субстратом КХ полностью или частично (в зависимости от размеров субстратной группы К) экранирует [c.154]

    Тот факт, что экспериментальные данные удовлетворительно описываются тем или иным уравнением, нельзя рассматривать как доказательство адекватности предлагаемой математической модели. Например, Рабин [40] дал иное простое объяснение сигмоидного характера кривой зависимости скорости ферментативной реакции от концентрации субстрата ). Кооперативными свойствами может обладать даже мономерный фермент с единственным центром связывания. Фермент в активной конформации (Е) взаимодействует с субстратом, и образующийся комплекс ES быстро распадается с образованием продукта [верхняя петля на схеме (6-58)]. Однако не исключена возможность медленного [c.38]


Смотреть страницы где упоминается термин Модель взаимодействия субстрата с ферментом: [c.240]    [c.689]    [c.689]    [c.58]    [c.308]    [c.26]    [c.268]    [c.483]    [c.164]    [c.497]    [c.544]   
Краун-соединения Свойства и применения (1986) -- [ c.83 ]




ПОИСК





Смотрите так же термины и статьи:

Субстрат

Фермент субстрат



© 2025 chem21.info Реклама на сайте