Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Равновесные и необратимые процессы

    Принцип локального равновесия — один из основных постулатов термодинамики необратимых процессов, поскольку позволяет использовать фундаментальные уравнения равновесной термодинамики для исследования неравновесных процессов. Рассмотрим неоднородную неравновесную систему и разобьем ее мысленно на большое число макроскопических элементов массы, настолько малых, что неоднородностью их свойств можно пренебречь. [c.136]


    Следует указать важную особенность приведенных выше формулировок 2-го закона термодинамики. Они отражают необратимый характер термодинамических процессов и фактически отражают принцип возрастания энтропии (Л5>0). Они не могут быть интерпретированы с позиций принципа существования энтропии S = Q/T). Принцип существования энтропии определяет, что в равновесно протекающих процессах изменения проходят под действием энергии в форме теплоты. [c.87]

    Понятие об энтропии и введение новой функции в термодинамику было осуществлено на основе формулировок 2-го закона термодинамики и теорем Карно и Клаузиуса. Следует указать, что в равновесно протекающих процессах невозможно отделить самопроизвольные (спонтанные) процессы от несамопроизвольных. В то же время формулировка 2-го закона термодинамики предполагает отделение этих процессов один от другого. В настоящее время для разрещения этого противоречия развивается термодинамика необратимых процессов (И. Р. Пригожин). Классическая термодинамика изучает на основе 2-го закона термодинамики только равновесные процессы и системы. [c.83]

    Это неравенство для изолированной системы определяет, что спонтанные процессы в них проходят только с конечной скоростью, сопровождаемые возрастанием энтропии. Равновесные процессы протекают без изменения энтропии на каждой стадии, то есть 51=5г. Для необратимых процессов по знаку изменения энтропии можно определить тип процесса и направление его протекания. Для равновесных процессов по знаку изменения энтропии также можно предсказывать направление протекания процесса при данном изменении Р, Т и V. Так, если Д5>0, то она характеризует возможность самопроизвольного протекания процесса, при Д5< 0 возможно протекание процесса только при затрате работы. Последние процессы не могут быть осуществлены в изолированной системе и они не изучаются в термодинамике необратимых процессов и классической термодинамике. Возрастание энтропии Клаузиус распространил от изолированных систем на Вселенную и высказал предположение о возможной [c.96]

    Термодинамика необратимых процессов в отличие от классической термодинамики, в которой отсутствует понятие времени и под процессами подразумевается цепочка равновесных состояний, рассматривает именно протекание явлений во времени [8]. Основы учения о переносе энергии были разработаны в магистерской диссертации Н.А.Умова в 1874 г. Уравнение Умова для объемной плотности энергии IV в дифференциальной форме имеет вид  [c.16]


    Термодинамика определяется как наука, изучающая процессы взаимопревращения теплоты и работы. В настоящее время выделяют общую (физическую), техническую и химическую термодинамику, которые в основном изучают равновесно протекающие процессы. В последнее время интенсивно развивается термодинамика необратимых процессов и появляются исследования термодинамики самопроизвольных и несамопроизвольных процессов, как новое направление термодинамики необратимых процессов. [c.5]

    Термодинамика необратимых процессов выявляет закономерности протекания химических и других процессов во времени, а термодинамика координированных систем изучает изменение структуры веществ при переходе их из одного равновесного состояния в другое. [c.6]

    Классическая термодинамика позволяет проводить расчеты для систем, находящихся в равновесном состоянии и для равновесно протекающих процессов. Последнее определяется тем, что любой реальный процесс можно свести к квазиравновесно-му, когда его состояние однозначно определяется соответствующими параметрами. Состояние системы в двух разных точках будет одним и тем же независимо от того, каким путем был осуществлен переход между ними — обратимо или необратимо. [c.9]

    Как следует из второго закона термодинамики (см. 68), энтропия замкнутой системы не может убывать она или возрастает (при необратимых процессах), или остается неизменной (при обратимых процессах). Если замкнутая система не находится в состоянии равновесия, она стремится перейти в равновесное состояние, и в процессе такого перехода ее энтропия будет возрастать, пока не достигнет максимального значения. [c.289]

    Работа, производимая рабочим телом при термодинамически обратимом проведении процесса, называется максимальной, а для химической реакции ее называют химическим сродством. Если работу производит машина, в которой протекают термодинамически необратимые процессы, то она меньше работы равновесного процесса  [c.94]

    Лекция 5, Равновесные, неравновесные, обратимые и необратимые процессы. Второе начало термодинамики. Энтропия и термодинамическая вероятность состояния системы. [c.209]

    Следует отметить, что кинетику перехода неравновесной системы к равновесному состоянию изучают в термодинамике необратимых процессов, которая посвящена в основном исследованию закономерностей протекания самопроизвольных процессов. Ниже излагаются основы термодинамики протекания само-и несамопроизвольных процессов. [c.97]

    Он определяет переход вещества из 2-ой фазы в 1-ую, причем этот процесс проходит самопроизвольно. Эти неравенства позволяют сделать такой общий вывод вещество переходит из той части системы, в которой химический потенциал достаточно высок, в ту часть системы, где потенциал вещества (фазы) более низок. Такой переход веществ осуществляется спонтанно и сопровождается убылью химической энергии в одной части системы и возрастанием ее в другой части. Избыток химической энергии по сравнению с равновесным значением может явиться источником работы в необратимом процессе и источником максимально полезной работы в обратимом процессе. Движущей силой перехода компонентов из одной фазы в другую или химического превращения вещества является разность химических потенциалов Дц=ц1 — 1 ". При равновесии Дц=0. [c.148]

    Из неравенств (II, 151) и (II, 152) видно, что изобарный потенциал системы при постоянных р я Т уменьшается при необратимых процессах и остается постоянным при обратимых процессах. Равновесное состояние системы соответствует минимуму изобарного потенциала поэтому условием равновесия при постоянных р и 7 будет [c.120]

    Для необратимых процессов, протекающих в изолированных системах, энтропия и термодинамическая вероятность растут и достигают максимального значения при установлении в системе равновесного состояния. Таким образом, между энтропией и термодинамической вероятностью существует зависимость, которую Больцман Б общей форме выразил уравнением [c.151]

    Равновесно или неравновесно протекающие процессы называют еще обратимыми и необратимыми. Процессы могут проходить быстро или бесконенчо медленно. Процессы, которые протекают с конечной скоростью, называют термодинамически необратимыми. Обратимые процессы в природе и технике никогда не протекают, но можно создать условия, которые приблизят процесс к равновесному их протеканию. В качестве примера можно рассмотреть условия сжатия и расширения газа в цилиндре с поршнем, движущимся без трения. Особенности протекания процессов сжатия и расширения газа можно рассмотреть с помощью графика, приведенного на рис. 18. [c.84]


    Использование функции распределения в этой форме буДет продемонстрировано в следующем разделе при расчете термодинамических свойств в квази-равновесных условиях. Процессы, протекающие во времени и относящиеся к области термодинамически необратимых, рассматриваться не будут. [c.22]

    Надо отметить, что с этих позиций различные научные теории, количественно описывающие физические явления, представляют собой математические модели природы. Примерами таких теорий являются кинематическая теория газов, кинетическая теория высокоэластичности резин, модель атома Бора, молекулярные теории полимерных растворов и каждое из уравнений переноса, рассмотренное в этой главе. Все они, как и всякая математическая модель, содержат упрощающие предположения. Например, в уравнениях переноса содержится допущение о сплошности среды и, что еще более неточно, необратимые процессы считаются локально равновесными. Важнейшим различием между математическим моделированием природных явлений и математическим описанием технологических процессов являются требуемый уровень точности и, конечно, уровень общности явлений, описываемых в том и другом случаях. [c.113]

    По постановке данная проблема сходна с проблемой классической термодинамики о предсказании направления самопроизвольных необратимых процессов в изолированной системе второе начало термодинамики требует, чтобы в последнем случае эти изменения происходили в направлении увеличения энтропии. При этом энтропия достигает своего максимального значения в конечном равновесном состоянии. [c.339]

    Таким образом, изменение энтропии в системе является критерием обратимости протекающего процесса. В основном все процессы в природе протекают необратимо, т. е. с возникновением энтропии. Обратимые процессы являются предельным случаем реальных процессов, если представить их как протекающие бесконечно медленно. Несмотря на это, как мы увидим в дальнейшем, имеется возможность исследования необратимых процессов методами равновесной термодинамики, если мысленно представить необратимый процесс как последовательность обратимых процессов. [c.235]

    Потенциал полуволны необратимой полярограммы катодного процесса резко сдвинут в отрицательную сторону по сравнению с равновесным значением 1/2, и этот сдвиг приблизительно равен перенапряжению процесса (рис. 4.16). Необходимо отметить, что потенциал полуволны необратимого процесса не является постоянной величиной и зависит как от состава раствора, так и от параметров установки — скорости вытекания ртути и периода капанья (см. уравнение (4.51)]. Характерным примером необратимой полярограммы является волна восстановления иона гидроксония. [c.235]

    Важное значение имеет рассматриваемая ниже классификация ноликонденсации по признаку термодинамической равновесности (обратимости) или неравновесности (необратимости) процесса. [c.31]

    В обычных электрохимических цепях с водными растворами электролитов необратимыми процессами диффузии сольватированных электронов от одного электрода к другому можно пренебречь вследствие их исчезающе малых концентраций. Однако в устойчивом растворителе (жидкий аммиак, гексаметилфосфортриамид) у электрода из щелочного металла равновесная концен- [c.138]

    В химической термодинамике большое значение имеют понятия равновесный и неравновесный, обратимый и необратимый процессы. Чтобы раскрыть сущность этих понятий, следует рассмотреть, напри- [c.15]

    В обоих соотношениях знак равенства относится к равновесным (обратимым) процессам, а знак неравенства к неравновесным или необратимым процессам. Таким образам, соотношение (У.225) определяет критерий возможного самопроизвольного изменения системы — увеличение энтропии — и критерий равновесия изолированной системы, т. е. максимум энтропии. [c.170]

    Казалось бы, что для такого электролиза достаточно, чтобы Е ц лишь немного превышала Е -= 1,23 В. Однако вследствие необратимости процесса электролиза разложение электролита обычно происходит при большей разности потенциалов, чем равновесная э. д. с. гальванического элемента, возникающего вследствие поляризации, и резкий подъем кривой наблюдается при более высоких значениях Евн- В действительности, электролиз раствора серной кислоты происходит при вн. близкой к 1,7 В. Разность между величинами р — Ец называется перенапряжением в рассматриваемом случае оно составляет 0,47 В. [c.195]

    Если в результате протекания процессов в прямом и обратном направлениях в системе или в окружающей среде останутся не исчезающие изменения, то процесс называют необратимым. Такой процесс возможно реализовать в обратном направлении только с применением внешних воздействий, как правило, оставляющих изменения в системе или среде. Необратимые процессы обычно идут самопроизвольно и только в одном направлении — в сторону приближения к равновесному состоянию и прекращаются, когда такое состояние будет достигнуто. Например, переход теплоты от более нагретого тела к менее нагретому, кристаллизация переохлажденной жидкости или испарение перегретой ж] дкд щ взаимная диффузия газов или жидкостей и др. [c.94]

    Все химические реакции обратимы в том смысле, что в зависимости от условий они могут протекать как в прямом, так и в обратном направлении. Например, смесь азота и водорода реагирует с образованием аммиака. Последний, в свою очередь, частично распадается на исходные вещества. Эта обратимость, однако, не эквивалентна термодинамической обратимости. Реакция, обратимая термодинамически, должна как в прямом, так и в обратном направлении проходить через непрерывную последовательность равновесных состояний. С этой точки зрения химические реакции в обычных условиях их протекания принадлежат к числу необратимых процессов они совершаются самопроизвольно лишь в одном направлении, пока не будет достигнуто состояние термодинамического равновесия, называемое, применительно к химическим процессам, химическим равновесием. [c.123]

    Необратимые процессы. Повседневный опыт показывает, что существуют процессы, которые протекают самопроизвольно. Наиболее яркими примерами таких процессов являются переход теплоты от горячего тела к холодному, замерзание переохлажденной жидкости, расширение газа в пустоту, взаимная диффузия газов или жидкостей. Это все примеры одностороннего течения процессов. Они всегда направлены в сторону приближения к равновесному состоянию и прекращаются, когда это состояние достигнуто. При теплопередаче равновесие определяется равенством температур, при кристаллизации — равенством давлений во всем объеме, при диффузии — равенством концентраций. Для самопроизвольных (спонтанных) процессов характерен общий признак они сопровождаются превращением различных видов энергии в теплоту, а теплота равномерно распределяется между всеми частями системы. При этом подведение к системе того количества теплоты, которое освободилось при процессе, не вызывает обратного течения ни одного из названных процессов. Важно заметить, что косвенными путями можно вернуть систему в первоначальное состояние, однако при этом неизбежно придется произвести какие-либо энергетические изменения в окружающей среде. В противном случае необходимо было бы признать возможность вечного двигателя второго рода. [c.45]

    Классическая термодинамика изучает свойства только равновесных систем. Стационарные системы описываются методами термодинамики необратимых процессов. [c.11]

    Термодинамическая вероятность состояния W и энтропия изолированной системы S являются различными мерами стремления системы к равновесию. Обе величины возрастают при необратимых процессах, приближающих систему к равновесию, и достигают максимума при равновесном состоянии системы. Между величинами W и S имеется количественная связь. Общий вид этой связи нетрудно установить, если учесть аддитивность эитропии, которая является суммой энтропий отдельных частей равновесной системы, и мультипликативность вероятности сложного события, которая является произведением вероятностей отдельных независимых событий. [c.107]

    Не следует путать обратимость (равновесность, квазистатичность) термодинамическую с обратимостью химической реакции. Последняя означает, что в процессе А1 — -Аз со временем начинает играть роль процесс А2 —А1, что и отражено в общей записи Аз. Эта обратимость кинетическая никак не связана с обратимостью термодинамической, и в естественных условиях обратимая химическая реакция является термодинамически необратимым процессом, система приходит в состояние не исходное, но конечное, и ее состав и свойства отличны от состава и свойств исходной системы. Два макроскопических состояния считаются разными, если отличаются хотя бы одной из макроскопических характеристик. Состояние системы, не меняющееся со временем, называется стационарным. Оно является равновесным, если неизменность его во времени не обусловлена каким-либо внешним воздействием. [c.21]

    Существуют три параллельных механизма воздействия химической реакции на скорость массопередачи. Во-первых, наличие в системе химической реакции, как правило, оказывает влияние на установление равновесного распределения переходящего компонента между фазами и тем самым иа движущую силу процесса массопередачи независимо от способа ее выражения. Во-вторых, химическая реакция оказывает влияние на величину коэффициента массопередачи независимо от способа его выражения, т. е. независимо от способа выражения движущей силы процесса. Взаимное влияние химической реакции и процессов переноса рассматривается термодинамикой необратимых процессов. Общий подход к вопросу разработан Де Гроотом и Мазуром [1], которые рассмотрели процесс теплопередачи в системе с химической реакцией. Вопросы взаимного влияния массопередачи и химической реакции с позиций термодинамики необратимых процессов рассматривались Оландером [2], а также Фридлендером и Келлером [3]. Хотя количественные результаты были получены 13] лишь для области очень малых отклонений от химического равновесия, однако качественно было показано, что наличие объемной реакции приводит к увеличению потока массы. [c.226]

    Отсюда следует, что в любых изолированных системах (в них могут совершаться только адиабатные процессы) энтропия системы сохраняет постоянное значение dS = 0), если в системе совершаются только обратимые процессы, и возрастает dS>0) при всяком необратимом процессе. Следовательно, в изолированны системах всякий самопроизвольно протекающий процесс сопровождается возрастанием энтропии. Процесс протекает самопроизвольно до тех пор, пока система не перейдет в равновесное состояние, в котором энтропия достигает значения, максимального для данных условий, т. е. при устойчивом равновесии должно соблюдаться [c.218]

    Формализм, развитый в 15, дает возможность описать равновесные и неравновесные состояния между различными фазами. Остается еще вопрос, как следует описывать установление термодинамического равновесия в каждой однокомпонентной системе. Если такая система не находится в термодинамическом равновесии (здесь не учитывается наличие внешних полей), то она имеет в общем случае местные неоднородности и поэтому, согласно общему определению 2, не является фазой. Тогда нужно расширить следствия 15 и применить их к бесконечно малым элементам объема, считая их гомогенными. В этом случае величины состояния 15 станут величинами поля, что приводит к формализму термодинамики необратимых процессов. В обычной термодинамике в явном виде этот формализм не применяют. Следовательно, фазы всегда рассматривают как [c.73]

    Другими словами метод химической сборки позволяет получать простые и сложные твердые вещества как уже известные, так и новые соединения заданного состава и стро(шия, в том числе и такие, которые не могут быть получены другими способами. Его можно использовать для целенаправленного создания новых сорбентов, катализаторов и других материалов, а также покрытий. Мы видим, что прямой синтез твердых тел с- его подчас крайне тял елыми условиями, задаваемыми термодинамикой процесса, может быть заменен ступенчатым, а именно, чередованием в определенной последовательности актов необратимой химической сорбции. Химическая энергия этого экзотермического процесса используется для принудительного размещения структурных единиц в заранее намеченном порядке, т. е. для химической сборки твердого тела. Большим преимуществом данного метода является то, что твердые вещества этим методом можно получать при сравнительно невысоких температурах и давлениях, и, во всяком случае, при температурах и давлениях значительно более низких, чем равновесные в процессе прямого синтеза или диссоциации соответствующего твердого тела. [c.213]

    В гальваническом элементе сами по себе равновесные электроды образуют неравновесную систему. Причиной неравнрвесности является разница плотностей электронов в металлах и, следовательно, стремление их переходить от одного металла к другому по внешней цепи. Одновременно во внутренней цепи происходит перенос ионов. Например, если во внешней цепи (рис. 11.2) электроны перемещаются слева направо, то на левом электроде протекает реакция окисления Mi -> +ze , а на правом — реакция восстановления - -ze -> М2. Катионы во внутренней цепи движутся от М к М2. Перенос катионов происходит до тех пор, пока не создается определенное (равновесное) для каждой температуры соотношение концентраций (активностей) электролитов в двух растворах. В качестве примера может служить цинковый элемент Якоби — Даниэля (рис. 11.3). Разомкнутый элемент находится в затормо женном неравновесном состоянии и может пребывать в этом состоянии как угодно длительно. Замыкание электродов металлическим проводником снимает торможение. На Zn-электроде (электрохимически более активном) протекает термодинамически необратимый процесс [c.168]

    Причиной самопроизвольной эволюции замкн /той системы к состоянию с минимумом термодинамического потенциала является второе начало термодинамики, которое требует обязательности увеличения энтропии 5 в изолированной системе при протекании в ней необратимых процессов. Однако путь такой эволюции классическая равновесная термодинамика предсказать не может. [c.289]

    Общим во всех явлениях образования упорядоченных структур при протекании необратимых процессов в сильнонеравновесных открытых системах является совместное (кооперативное) движение или химическое превращение больших групп молекул. Иногда для таких процессов используется общий термин синергетика (от феческого слова synergos — совместно, или кооперативно, действующий). Физическая природа синергетики состоит в том, что в нелинейной области, вдали от равновесного состояния, система теряет устойчивость, и малые флуктуации приводят к новому режиму — согласованному движению или превращению сразу многих частиц. [c.350]

    Наряду с необратимыми процессами термодинамика рассматривает обратимые процессы, т. е. такие, которые могут идти как в прямом, так и в обратном направлениях при бесконечно малом изменении действующих на систему сил и без изменения работоспособности системы в обоих направлениях. В случае самопроизвольно происходящих изменений примерами таких идеальных обратимых процессов могут служить разрядка батареи через по-1енциометр, дающий разность потенциалов противоположного знака, и расширение газа в идеальном цилиндре с поршнем при медленном изменении противодействующего давления. Поскольку вполне равновесный процесс практически неосуществим, обратимый процесс есть процесс идеальный. Однако понятие обратимого процесса широко используется в термодинамике. [c.64]

    Чтобы уяснить понятия обратимости и необратимости процессов, можно исходить также из представлений о равновесности или квазистатичности. Рассмотрим принцип максимальной работы. [c.92]

    Говорить об обратимых или необратимых процессах можно лишь в тех случаях, когда рассматривается изолированная система. В отношении же неизолированных систем, строго говоря, следует применять термины, равновесная и неравновесная ,, Но так как достаточным ус.повием обратимости процессов является их равновесность, то в дальнейшем в основном будем применять только термины обратимость и необратимость . [c.20]

    В-третьих, только при обратимом процессе термодинамические параметры приобретают однозначность и становятся возможными термодинамические расчеты, определяющие изменения различных свойств системы в обратимом процессе. Найденные изменения Б силу независимости изменения свойств системы от пути про-< цесса будут совпадать с изменениями свойств, сопровождающими необратимый процесс (при совпадении исходного и конечного состояния систем). Да и графически изобразить необратимые процессы невозможно любая точка в соответствующей системе координат, например в системе координат Р Т, характеризуя равновесное состояние, превращается для системы, совершающей необ-> ратимый процесй, в неопределенную область. Эта область, размеры которой тем значительнее, чем сильнее отличается состояние системы от равновесия, будут заключать в себе совокупность точек, охватывающую некоторый интервал равновесных состояний. Поэтому графически можно изобразить только обратимый про- цесс. Следовательно, рис. 1а и б имеет условный характер, иллюстрируя неопределенность значений Р и V между соответствующими равновесными состояниями системы. [c.23]

    Если в процессе деформирования среды вся работа внешних сил диссипирует (рассеится), то это процесс течения в чистом виде, и после прекращения действия внешних сил вся совершенная деформация окажется необратимой, и достигнутое новое состояние будет равновесным. Характер процесса течения будет определяться связью напряжений, возникающих в жидкости, и скоростью деформации. [c.13]


Смотреть страницы где упоминается термин Равновесные и необратимые процессы: [c.365]    [c.139]    [c.341]    [c.93]    [c.266]    [c.267]   
Смотреть главы в:

Правило фаз Издание 2 -> Равновесные и необратимые процессы

Правило фаз Издание 2 -> Равновесные и необратимые процессы




ПОИСК





Смотрите так же термины и статьи:

Процесс необратимый

Равновесные процессы



© 2025 chem21.info Реклама на сайте