Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Применение координационных соединений

    Известны две основные области применения координационных соединений в электрохимии [44, 45]. Комплексы используются в гальванопокрытиях и антикоррозионных жидкостях. Обычно гальванопокрытия наносят в растворе, причем объект, на который осаждают тонкий покровный слой металла, выполняет функцию катода. Все ионы металлов в растворе координируют лиганды, и характер осадка, получаемого на поверхности катода, определяется в основном природой лигандов. Для получения равномерного покрытия нужно, чтобы концентрация ионов металла в растворе была низкой, так как при этом замедляется рост кристаллов. В случае слишком высоких концентраций иона металла осаждение идет очень быстро, и получается зернистый неравномерный, бугристый, нанесенный пластами осадок. Поэтому цианид-ион является лигандом, применяемым наиболее часто прежде всего для осаждения элементов, находящихся в правой части переходных рядов Си, Ag, Au, Zn и d. Однако используют многие другие лиганды, например амины, этилендиамин, сульфаминовую кислоту, фосфат, сульфат и хлорид. [c.292]


    ПРИМЕНЕНИЕ КООРДИНАЦИОННЫХ СОЕДИНЕНИЙ [c.420]

    Практическое применение правила произведения растворимости часто осложняется различными реакциями, в которые вступают ионы малорастворимого соединения. Анионы слабых кислот (РО4 , СОз и т. д.) и многие катионы (Ре +, А ", Си и т. д.) могут вступать в реакции кислотно-основного взаимодействия, катионы могут образовывать координационные соединения с присутствующими анионами или другими лигандами в растворе, [c.86]

    Среди титриметрических методов, основанных на реакциях комплексообразования, наибольшее значение имеют реакции с применением комплексонов. Устойчивые координационные соединения с комплексонами образуют почти все катионы, поэтому методы комплексонометрии универсальны и применимы к анализу широкого круга разнообразных объектов. Рабочие растворы устойчивы. Для установления точки эквивалентности имеется набор цветных индикаторов и разработаны физико-химические методы индикации потенциометрические, амперометрические, фотометрические, термометрические и др. Точность титриметрических определений составляет 0,2...0,3%. Методы комплексонометрического титрования непрерывно совершенствуются. Синтезируются новые типы комплексонов, обладающих повышенной селективностью, и новые индикаторы. Расширяются области применения комплексонометрии. [c.245]

    Наиболее важно применение эффекта Фарадея, а именно магнитного кругового дихроизма, в относительно высокосимметричных системах, таких, как координационные соединения, ароматические соединения и биологически активные соединения. Этот метод имеет значительные преимущества перед методом электронных спектров поглощения. Однако слишком еще преобладает эмпирический подход в анализе экспериментальных данных. Необходимо дальнейшее развитие теории метода. [c.262]

    Помимо целей идентификации и спектрофотометрии, электронные спектры поглощения находят широкое применение для решения структурных проблем и прежде всего в химии координационных соединений. Наиболее характерны в этом отношении спектры комплексов переходных металлов, строение которых связано с наличием в них частично или полностью заполненных -орбиталей. Самую простую модель для описания связей в комплексных соединениях переходных металлов дают теории поля лигандов и кристаллического поля. Они позволяют выяснить влияние лигандов на снятие вырождения -орбиталей центрального атома (иона) металла и понять или даже предсказать строение, спектры и магнитные свойства комплексов. Согласно теории кристаллического поля вырожденные электронные энергетические уровни центрального иона могут претерпевать существенные изменения (расщепление) под возмущающим действием полей лигандов, окружающих центральный ион. [c.181]


    Сопоставление колебательных спектров многих органических соединений, обладающих одинаковыми группами атомов СНз, СНг, ОН, NH2 и т. д., показало, что в спектрах присутствуют одни и те же или мало отличающиеся друг от друга частоты. Некоторые частоты можно привести в соответствие с колебаниями ядер атомов в отдельных атомных группах. Такие частоты принято называть характеристическими. Обнаружение характеристических частот в спектре какого-либо органического соединения позволяет сделать вывод о наличии в нем соответствующих групп атомов. Этот принцип лежит в основе спектрального группового анализа органических и некоторых координационных соединений. Однако этот принцип не может быть применен к неорганическим соединениям, поскольку массы колеблющихся атомов и характер химических связей между атомами сильно различаются. [c.27]

    Одним из наиболее полезных применений изотопного обмена было изучение реакций замещения в координационных соединениях. Оказалось возможным установить соотнощение электронной конфигурации центрального атома металла со скоростью обмена между координированными ионами и радиоактивными ионами в растворе. Многие комплексы обменивают свои анионы очень быстро, в то время как для других комплексов скорости обмена невелики. Это зависит, по-видимому, от заселенности -орбиталей в центральном атоме металла  [c.422]

    Применение метода МО к координационным соединениям [c.187]

    Рассмотрим применение основных положений этой теории к координационным соединениям, у которых в качестве центрального иона комплексообразователя выступают ионы с незаполненной Зс(-оболочкой. [c.115]

    ПРИМЕНЕНИЕ ТЕОРИИ ОЭПВО К КООРДИНАЦИОННЫМ СОЕДИНЕНИЯМ [c.166]

    ПРИМЕНЕНИЕ ТЕОРИИ МОЛЕКУЛЯРНЫХ ОРБИТАЛЕЙ для ОПИСАНИЯ ЭЛЕКТРОННОГО СТРОЕНИЯ КООРДИНАЦИОННЫХ СОЕДИНЕНИЙ [c.433]

    Вопрос о строении комплексных соединений можно обсуждать с электростатической точки зрения, при помощи теории кристаллического поля, используя модели донорно-акцепторных и дативных связей в методе валентных схем или метод молекулярных орбиталей (МО). Идеи и выводы каждого из методов с успехом применяются в характерных для них сферах химии координационных соединений, но приближенный характер методов ограничивает их применение. [c.17]

    В настоящее время природу координационной связи можно описать тремя методами методом валентных связей, теории кристаллического поля и методом молекулярных орбиталей. Суть двух из них была изложена в общем виде в гл. 6 Химическая связь . Здесь мы остановимся на применении этих теорий к объяснению связи в координационных соединениях. [c.378]

    За последние два десятилетия -теоретико-графовые и топологические представления приобретают все возрастающую по своей важности роль в разнообразных областях химических и биомедицинских исследований. Топологические методы нашли применение if химической документации [1], при различении изомеров и описании разветвленности молекул [2, 3], перечислении изомеров, соответствующих определенной эмпирической формуле [4], определении структурного сходства и различия однотипных соединений [5], при описании перегруппировок в полиэдрических координационных соединениях [6, 7], расчете квантовохимических параметров [8], при исследовании корреляций структура — свойство [8] и химическая структура — биологическая активность [9, 10]. Молекулярные структуры фактически являются графами, в которых атомы [c.206]

    Применение тетраметилэтилендиамина (ТМЭДА) совместно с алкиллитиевыми соединениями привело к расширению области использования реакции присоединения [61]. ТМЭДА дает координационное соединение с катионом лития, в результате чего образуется более нуклеофильный карбанион. Например, при использовании ТМЭДА получают более высокий выход в следующей реакции [62]  [c.150]

    Нельзя себе представить развитие современной науки, промышленности и сельского хозяйства без применения координационных соединений. Важной областью использования координационных соединений является металлокомилекспый катализ. В качестве примера можно привести реакцию полимеризации этилена и его аналогов с участием катализатора Циглера — Натта (координационного соединения алюминия и титана). [c.243]

    Кроме того, социклоолигомеризация в настоящее время возможна и при применении координационных соединений на основе никеля [8]. [c.135]

    Эффективным приемом, используемым на стадии пробоотбора загрязнений воздуха, является образование в процессе абсорбции примесей неустойчивых комплексных соединений. После концентрирования в ловушке контролируемых компонентов комплексы разрушаются, а вьщеляющиеся при этом целевые компоненты (часто после повторного концентрирования) определяют на уровне 0,0001 мг/м Полнота извлечения может колебаться в пределах 81-100% [126]. Показана возможность применения координационных соединений для отделения и предварительного концентрирования загрязняющих веществ. Для этой цели, в частности, применяют пенополиуретаны с нанесенными на них гидрофобными хелатообразую-щими реагентами [130[. Такие ловушки хорошо зарекомендовали себя при улавливании из воздуха токсичных аэрозолей металлов. За счет образования амальгамы серебра со ртутью можно осуществить эффективный пробоотбор паров металлической ртути в ловушке с хромосорбом Р, покрытым серебром [129]. [c.134]


    Успешное использование машинных средств при описании каталитических процессов связано с применением адекватного языка описания химической структуры. В настоящее время для описания химических структур все шире используют теоретико-графовые н топологические представления [54—56], например, при установлении изомеров в описании разветвленных молекул [57, 58] перечислении изомеров, соответствующих эмпирической формуле [59] определении структурного сходства и различия однотипных соединений [60] описании перегруппировок в полиэдрических координационных соединениях [61, 62] исследовании корреляций структура—свойство [63] и химическая структура—биологическая активность [64, 65] расчете квантовохимических параметров [63]. Перечисленные подходы, используя тот или иной способ кодирования структур, основываются на методах иденти-фикацпп, распознавания, логических выводов. [c.91]

    Для выделения бутадиена ранее широко использовался процесс хемосорбции, основанный на способности алкенов образовывать координационные соединения с со.1ями металлов переменной валентности. Промышленное применение нашли водно-аммиачные растворы ацетата меди (I). [c.177]

    Лекция 16. Общие сведения о конплексних соединениях. Комплексообразо-ватель, лиганды, координационное число. Способность лементов периодической системы к комплексообрглзовянию. Теория образования комплексных соединений. Классификация комплексов. Номенклатура. Диссоциация комплексных соединений в растворе. Применение комплексных соединение в технологических процессах. [c.180]

    Рассмотренные в разделе методы исследования дают ценнейшую информацию о строении, электронных эффектах и передаче взаимного влияния групп в органических, элементорганических, неорганических и координационных соединениях. Как спектроскопия ЯКР, так и мессбауэровская спектроскопия оказались весьма полезными при изучении некоторых биохимических объектов и проблем, показана перспективность их применения в макромоле-кулярной химии. Получено много интересных эмпирических корреляций параметров, определяемых из спектров ЯКР и ЯГР, с другими физико-химическими характеристиками веществ. Оба метода позволяют исследовать структуру и динамику твердых фаз, фазовые переходы, подвижность молекул в кристаллах и многие другие проблемы. [c.131]

    Комплексы, обладающие невысокой растворимостью в определенных растворителях, могут быть использованы в аналитических целях. Интенсивно окрашенные вещества находят применение в колориметрических определениях. Более высокий молекулярный вес комплекса по сравнению с молекулярным весом исходной простой соли способствует более точному весовому определению элемента. Часто координационные соединения применяют в волюметрических методах для маскировки мешающих анализу ионов (например, в присутствии фторид-ионов воз-М0Ж1Н0 определение меди, находящейся в растворе в смеси с ионами трехвалентного железа), в качестве титрующих агентов [c.15]

    Необычными примерами кислотно-основных реакций по Льюису является образование координационных соединений. Примером может служить образование колгалексного аммиаката меди, в котором каждая молекула аммиака дает иону меди пару электронов, образуя комплекс Си(ННз)Г. Подобное расширение применения [c.334]

    Указанные особенности координационной связи приводят к колоссальному многообразию структурных типов молекул координационных соединений, а также кристаллических структур твордых тел. Природа сил, обусловливающих координационную связь, лучше и правильнее всего описывается с помощью теории МО. Ввиду сложности структуры молекул и ионов координационных соединений прямые расчеты не всегда возможны или требуют при их проведении многих упрощающих допущений. Это вызывает особую необходимость в развитии полуколичественных теоретических представлений, позволяющих предсказывать устойчивость и свойстиа координационных соединений. Кроме качественной теории МО, в химии координационных соединений получила широкое распространение теория кристаллического ноля, которая, хотя и основывается на упрощенной физической модели строения, позволяет система-гически описать многие важные свойства комплексов. Теории ОЭПВО и гибридизация АО в химии координационных соединений пе нашли сголь широкого применения, как в случае соединений непереходньсх элементов. [c.409]

    На ранней стадии разиития теории строения координационных соединений представления теории гибридизации находили применение для описания их строения и магнитных свойств. Так, парамагнетизм солей аниона [Ni l ] может служить основанием для [c.412]

    Этот принцип носит весьма общий характер и применим не только к органическим реакциям, но также и к реакциям неорганических и координационных соединений. Далее рассмотрим отдельные примеры таких реакций. Однако наиболее характерный класс химических превращений, для которых применение принципа сохранения орбитальной симгиетрии имеет первостепенное значение, — это так называемые перициклические реакции органических молекул. [c.491]

    Благодаря наличию четвертичных аммониевых групп (около 10—12% от обш,его содержания ионогенных групп) анионитЭДЭ-10 в зависимости от условий его применения обладает различной обменной емкостью и проявляет различную степень основности. Как и другие аниониты, полученные поликонденсацией полиэтиленпо-лиаминов с эпихлоргидрином (АН-2Ф, АВ-16, АВ-31), анионит ЭДЭ-ЮП способен не только к реакциям анионного обмена, но и образует координационные соединения с катионами переходных металлов вследствие наличия неподеленных электронных пар у ионогенных групп и чередования последних через два метильных радикала. Это создает возможность образования не только комплексов типа аммиакатов, но и хелатных соединений переходных металлов и повышает селективность к некоторым металлам [40]  [c.68]

    В смеси инертных комплексов миграция их под действием диффузионных электрофоретических или каких-либо других сил происходит для каждого сорта ионов с характерной скоростью. На этом основано применение хроматографии при синтезе комплексных соединений. Хроматография и электрофорез могут быть использованы при синтезе, очистке и разделении координационных соединений. Например, очистка [Сг(ННз)в] " от [Сг(ННз)б (Нр) и [Сг(ЫНз)4 (Н20)2] на ионообменной колонке с AljOg использование для синтеза хлороаквокомплексов Rh , и и т. д. высоковольтного электрофореза на бумаге. [c.195]

    Т1С14 и триэтилалюминия, катализатор для полимеризации а-олефи-нов — из НОз и АШгС (К — органический радикал), применение хлоридов титана для этих целей основано на способности их образовывать координационные соединения и растворяться в углеводородах [32]. [c.242]

    Макроциклические производные а,а -дикарбонилгетероциклов. в основном представлены координационными соединениями, свободные лиганды лишь в редких случаях можно выделить из комплексов Варьирование структур получаемых соединений достигается как изменением структуры полиаминов, вступающих в реакцию конденсации, так и применением различных темплатных агентов. При переходе от одного темплатного агента к другому структура образующегося соединения может совершенно измениться Поэтому получение каждого из типов лигандов протекает только в присутствии лишь определенного набора темплатных ионов Рассматриваемые в настоящей главе макроциклические лиганды образуют устойчивые комплексы как с d- я /-переходными, так и со щелочными и щелочноземельными металлами [c.122]


Смотреть страницы где упоминается термин Применение координационных соединений: [c.35]    [c.8]    [c.50]    [c.669]    [c.243]    [c.166]    [c.210]    [c.421]    [c.423]    [c.63]    [c.82]   
Смотреть главы в:

Химия координационных соединений -> Применение координационных соединений




ПОИСК





Смотрите так же термины и статьи:

Координационные соединени

Соединения координационные



© 2025 chem21.info Реклама на сайте