Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алюминий. Железо Алюминий

    Среди элементарных веществ к типичным восстановителям принадлежат активные металлы (щелочные и щелочноземельные, цинк, алюминий, железо и др.), а также некоторые неметаллы, такие, как водород, углерод (в виде угля или кокса), фосфор, кремний. При этом в кислой среде металлы окисляются до положительна заряженных ионов, а в щелочной среде те металлы, которые образуют амфотерные гидроксиды (например, цинк, алюминий, олово), входят в состав отрицательно заряженных анионов или гидроксокомплексов. Углерод чаще всего окисляется [c.164]


    Синтетический катализатор содержит больше кремния и меньше алюминия, железа и кальция, чем естественный. Химический состав катализаторов, применяемых на установках типа флюид , близок к составу соответствующих шариковых и таблетированных катализаторов. [c.49]

    Загрязнение почвы влияет на ее плодородие. Плодородие почвы определяется содержанием минеральных веществ кремния, алюминия, железа, калия, кальция, магния, фосфора, серы, молибдена, бора, фтора и др. [c.8]

    Алюминий Железо Кадмий. Калий Кальций Магний. Марганец Медь. . Натрий Николь Платина Ртуть Свинец. Серебро. Хром. . Цинк. .  [c.15]

    Для определения содержания никеля, ванадия, меди и железа в нефтепродуктах 10—100 г ( в зависимости от содержания металлов) пробы смешивают в кварцевом тигле с серой (10% от массы пробы), медленно нагревают и поджигают. Сухой остаток прокаливают при 550°С, золу растворяют в нескольких миллилитрах 10%-ной азотной кислоты и раствор разбавляют до определенного объема (также в зависимости от содержания металлов). Эталоны готовят путем растворения чистых металлов в 10%-ной азотной кислоте. Диапазон концентраций металлов в рабочих эталонах составляют 1—20 мкг/мл железа, ванадия и никеля, 0,1—2 мкг/мл меди. В качестве внутреннего стандарта используют алюминий (металлический алюминий растворяют в хлороводородной кислоте). Плоскую поверхность графитового электрода диаметром 5 мм пропитывают 3%-ным раствором полистирола в хлороформе. После испарения хлороформа на поверхность наносят 0,1 мл раствора (0,1%) хлорида алюминия. После испарения воды на электрод наносят 0,3 мл раствора пробы или эталона и сушат. Подготовленные таким образом электроды используют для анализа. Спектры возбуждают дугой переменного тока силой 6 А. Использован спектрограф Р05-2, аналитический промежуток 4 мм, ширина щели 0,06 мм, экспозиция 51 с без предварительного обжига. Аналитические линии Ре 302,11 нм, N1 305,08 нм, V 318,34 нм, Си 324,75 нм, линия сравнения А1 265,25 нм [152]. [c.187]

    Важное исключение, однако, мы имеем в групповом осаждении аммиаком это ос Ждение нельзя применять для отделения железа, алюминия и других элементов от кобальта, как это делается в отношении умеренных количеств никеля. Захват кобальта осадком от аммиака значителен, даже при наличии малых количеств кобальта и при двукратном осаждении железа и алюминия [c.470]


    Летучие вещества должны быть удалены кальцинированием. Один из видов такого кокса после термообработки нри 1480°С был подвергнут анализу. Оказалось, что в нем 99,26% связанного углерода, 0,35% золы и 0,64% серы [169]. В золе может содержаться небольшое количество кобальта, никеля, олова, ванадия и молибдена [170]. Кроме того, минеральный остаток перегонки различных нефтепродуктов содержит, подобно золе в коксе, железо, алюминий, фосфор, марганец, двуокись кремния, кальций, магний, свинец, титан, натрий, медь, золото и серебро [171, 172]. [c.570]

    Гетерокоагуляция широко используется в процессах водо-подготовки и очистки сточных вод. в воду добавляют минеральные коагулянты, например соли алюминия, железа, магния, кальция. Эти соли снижают агрегативную устойчивость системы, и частицы загрязняющих веществ выпадают в осадок. Эффективность очистки воды от коллоидных дисперсий определяется не только снижением электростатического барьера, а главным образом гетерокоагуляцией. Соли алюминия и железа в результате гидролиза образуют малорастворимые в воде гидроксиды, частицы которых приобретают положительный заряд (взаимодействие с ионами водорода)  [c.397]

    Окись алюминия. Свойства этого сорбента можно также изменять подбором растворителя, сушкой и добавлением определенного количества воды или определенных веществ для получения модифицированной формы. Для анализа неорганических веществ чаще всего применяют силикагель или окись алюминия, очищенные от железа. Для этого их кипятят с концентрированной соляной кислотой, затем отмывают дистиллированной водой до отсутствия ионов хлора. После чего сорбенты сушат при 120° С в течение 48 ч. Окись алюминия сушат еще при 300—400° С, после этого добавляют определенное количество воды до нужной активности. [c.102]

    Самуэльсон применил ионный обмен для определения железа, алюминия, магния и кальция в присутствии фосфат-иона. Метод состоит в том, что навеску образца предварительно обрабатывают кислотами, переводят в мерную колбу емкостью 500 см , берут аликвотную часть в 50 см и пропускают через колонку, содержащую катионит в Н-форме. Колонку промывают 0,015-н. раствором соляной кислоты, а затем 4-н. раствором той же кислоты. В первом фильтрате определяют фосфор, во втором — железо, алюминий, кальций и магний. [c.189]

    Медь, золото и серебро - металлы, которых на Земле не очень много. Больше всего на нашей планете алюминия, железа и кальция. Почему же именно медь, золото и серебро были первыми открытыми элементами-метал-лами И что случается с некоторыми камнями , когда их нагревают в пламени костра или специальной печи Ответ на этот вопрос может дать химия. [c.150]

    Чтобы получить ответ на этот вопрос, приходится обратиться к рассмотрению кристаллического строения алюминия, железа и их оксидов. Структура элементарной ячейки, или межатомные расстояния, в кристаллах алюминия и его оксида приблизительно одинакова поэтому оксид алюминия, образующийся на поверхности металла, крепко пристает к находящемуся под ним некорродированному алюминию. Окисленная поверхность образует защитный слой, препятствующий проникновению кислорода к металлу. Анодированная алюминиевая кухонная утварь имеет оксидный слой повышенной толщины, который получают, помещая алюминиевый предмет в условия, особенно благоприятные для протекания коррозии для этого его превращают в анод, на котором проводится электрохимическая реакция. [c.190]

    Фосфаты удаляются химическим осаждением солями железа, алюминия, известью. Реагенты подают в сточную воду перед первичными отстойниками, в очищенный сток — перед вторичными отстойниками или в аэротенк. Наиболее эффективным является последний вариант. Оптимальная доза сульфата алюминия определяется из соотношения количества алюминия и фосфора от 1 1 до 1,5 1. Эффект удаления фосфатов достигает 80%. После добавки реагентов зольность ила повышается до 45% при этом ил приобретает хорошие седи-ментационные свойства. В пределах требуемых доз ре- [c.127]

    Как видно из табл. 37, между внутренними напряжениями никеля и параметром кристаллической решетки подкладки существует некоторый параллелизм, т. е. при увеличении раз личия в параметрах решеток осадка и подкладки внутренние напряжения возрастают. Нарушение этой связи в случае алюминия, железа и палладия связано, вероятно, с тем, что влияние природы подкладки искажается состоянием ее поверх ности, например, в случае палладия подкладка представляет собой не чистый металл [52], а систему водород—палладий, в случае алюминия и железа — слой окиси металла, так что представленные в таблице данные не соответствуют чистым металлам. [c.294]

    Остаток (алюминий, железо). ..... 0,83/1,96 3,45/1,43 [c.140]

    TOB (солей железа, алюминия, магния и т. п.). При введении коагулянтов в воду снижается агрегативная устойчивость системы, ионы сорбируются на поверхности частиц и в результате химической реакции образуется новое малорастворимое соединение, концентрация которого в воде значительно выше его растворимости. Чем больше концентрация примесей, выше температура процесса, интенсивнее перемешивание, тем быстрее частички формируются в крупные хлопьевидные агрегаты. Процессу способствуют электрическое и магнитное поле. [c.479]


    Конструкции разъемных соединений аппаратов разнообразны, но принципиально сводятся к двум типам. К первому типу относятся соединения без прокладок, в которых герметичность обеспечивается упругой и только частично остаточными деформациями сопряженных поверхностей, имеющих необходимую чистоту обработки (например, конические, сферические и линзовые уплотнения). Ко второму типу относятся соединения, в которых между сопрягаемыми поверхностями помещают прокладки из сравнительно мягкого металла — меди, алюминия, железа. Прокладки, деформируясь, уплотняют стыки, заполняя все неровности на поверхностях. [c.207]

    Свойства алюминия, обусловившие его широкое использование, перечислены в табл. 11.9. После железа алюминий - наиболее широко используемый металл. Как автомобильная, так и аэрокосмическая промышленность широко используют алюминий в качестве конструкционного материала из-за его прочности и легкости. Уменьшение массы автомобиля и самолета приводит к значительной экономии топлива. [c.160]

    Термическим хлорированием бутана при объемной скорости 300 час-1 и молекулярном отношении бутан хлор 4,5 1 практически получают только монохлориды. В случае применения для этой цели гетерогенных катализаторов (активной окиси алюминия, железа, силикагеля, хлорной меди и т. д.) при 170—200° степень использования хлора достигает 100%, а в продуктах реакции наряду с монохлоридами содержится большое количество полихлоридов. [c.122]

    Железо, медь, цинк и некоторые другие металлы попадают в бензин в основном в виде продуктов коррозии заводской аппаратуры, резервуаров, трубопроводов и арматуры, деталей системы питания, а также за счет износа перекачивающих средств. Кремний, алюминий и другие элементы попадают в бензин в виде окислов с почвенной пылью. Свинец попадает в бензин в виде продуктов разложения антидетонатора — тетраэтилсвинца. Такие элементы, как натрий, кобальт и другие, могут оставаться в бензине вследствие недостаточной отмывки его после, защелачивания, частичного уноса катализатора и т. д. [c.339]

    Анализ гидроокиси алюминия заключается в определении содержания нерастворимого остатка, окиси алюминия, железа, кремния и натрия, а также свободной серной кислоты. В лабораторных условиях перевод гидроокиси алюминия в сернокислый глинозем осуществляют растворением навески исходной гидроокиси алюминия в 50—60%-но1 1 серной кислоте при нагревании (кислоту берут в количестве 110—115% от необходимого по расчету). Влажность гидроокиси алюминия определяют высушиванием навеси при 110° С до постоянной массы. [c.153]

    Но вместо того чтобы покрывать железо алюминием, можно было бы просто делать предметы из алюминия, преимущество которого заключается также в малом весе. К сожалению, алюминий дороже железа. Старый [c.191]

    Рост тонких окисных пленок на металлах при низких температурах (на меди в кислороде при температуре до 100° С, на тантале при температуре до 150° С, на алюминии, железе, никеле и [c.47]

    Влияние анионов. Большие количества хлоридов, нитратов и сульфатов не мешают определению алюминия [750]. Не мешают бромиды и иодиды [646]. Перхлораты не мешают до 1 М концентрации. Если ЗЮа находится в истинном молекулярном растворе, то не мешает при соотношении А12О3 ЗЮз = 1 4. В присутствии полимеризованной ЗЮг при соотношении больше 1 4 результаты завышаются на 10°/о и выше. Перед определением алюминия целесообразно обрабатывать анализируемый раствор едким натром для перевода ЗЮа в молекулярную форму [109]. Фториды уже в количестве 10 мкг мешают экстракции оксихинолината алюминия, введение борной кислоты не устраняет их влияния [646]. При определении алюминия в тории небольшие количества фторидов (до 500 мкг) не мешают, так как торий связывает фторид в прочный комплекс [957]. Согласно Джентри и Шеррингтону [750], до 0,15 г фосфатов мало влияет на определение алюминия, но > 200 л/сг фосфорной кислоты мешает восстановлению железа [646]. До 0,2 г тартрата в 50 мл раствора мешает мало [750] по другим данным, допустимо 0,3 г винной кислоты в 80 мл раствора [869]. Поэтому винную кислоту используют для маскирования небольших количеств железа [869]. 0,3 г винной кислоты маскирует 5,6 мкг железа. Некоторые авторы вводят винную кислоту для удержания алюминия в растворе в щелочной среде. В стандартные растворы в этом случае также вводят такие же количества винной кислоты. [c.121]

    Крапплаками называются интенсивно окрашенные комплексные соединения оксиантрахинонов с ионами двух- и трехвалентных металлов алюминия, железа, хрома, кальция и др. Широко известен алюминиевокальциевый лак ализарина, который дает красочные покрытия, отличаюшиеся ярким и насыщенным малиново-красным цветом, лессирующими свойствами (просвечиваемостью) и высокой светостойкостью. Этот пигмент обычно разбавляется наполнителями (окисью алюминия, сернокислым барием и др.). Его можно применять для любых малярных работ. [c.277]

    В состав различных накипей входит большое число соединений, в основном кальция, магния, железа, алюминия, натрия, меди, цинка перечисленные катионы в этих соединениях обычно связаны с анионами кремниевой, серной, угольной, сернистой н фосфорной кислот. В состав более сложных накипей комплексного типа часто входят также окислы железа, алюминия и меди весьма часто встречаются также включения металлической меди. Кроме минеральных, в иакипи могут содержаться различные органические соединения и в тех или иных количествах присутствуют некоторые растворимые вещества, как, например, хлориды, нитраты и т. п. [c.322]

    При анализе горных пород хром попадает в осадок от аммиака. В его присутствии получаются повышенные результаты определения алюминия даже в том случае, когда на содержание СГ2О3 в осадке вводится соответствующая поправка. Это объясняется тем, что в процессе прокаливания СгаОд всегда несколько окисляется. Если содержание хрома не учитывается, величина погрешности при определении алюминия зависит от метода определения железа. Если железо определяют восстановлением раствора прокаленного остатка цинком и титрованием перманганатом, то хром (П1) сначала восстанавливается до хрома (П), а затем при титровании вновь окисляется до хрома (П1). Поскольку I мл 0,1 н. раствора перманганата соответствует приблизительно 0,008 г FeaOg и 0,0076 г r Og, результаты определения железа при этом получаются повышенными, а результаты определения алюминия—несколько пониженными. В том случае, когда железо восстанавливают сероводородом или сернистой кислотой, ошибка полностью отражается на результате определения алюминия, так как соли хрома (III) этими реагентами не восстанавливаются. [c.538]

    Такие окислители, как хроматы, наоборот, трудно восстанавливаются ва катоде [58] (воостанавливаются только в достаточно кислых средах), т. е. являются плохими катодными деполяризаторами, но в то же время сильно пассивируют железо и поэтому чаще выступают как замедлители коррозии. Если в воде нет большого количества С1 и реакция нейтральная, то достаточно 0,1 или 0,01 /о К2СГ2О7, чтобы вызвать сильное снижение коррозии, железа, алюминия и их сплавов. Однако возможны случаи, когда при недостаточной концентрации хромата и при наличии сильного активатора (С17, кислая среда) хромат может оказаться также стимулятором коррозии. Таким образом, окислительные вещества должны в общем рассматриваться как опасные замедлители, так как при недостаточном их количестве (особенно при наличии активных анионов) они могут вызвать ускорение коррозии. В этом случае общая площадь коррозии уменьшается (частичное пассивирование поверхности), но глубина коррозии сильно увеличивается вследствие деполяризующего действия окислителя на катодных участках. [c.159]

    Кремниевая кислота Н2510з легко образует пересыщенные растворы, в которых она постепенно полимеризуется и переходит в коллоидное состояние — гель. При его высушивании образуется пористый продукт — силикагель. Размер и распределение пор, форма зерен силикагеля зависят от технологии его производства. Отечественная промышленность выпускает силикагели марок КСМ, МСМ, ШСК. Первая буква марки силикагеля указывает на размер зерен К — крупный (2,7—7 мм), М — мелкий (0,25— 2 мм), Ш — шихта (1,5—3,6 мм) последняя буква —на пористость силикагеля М — мелкопористый К — крупнопористый. Косвенной характеристикой размера пор может служить насыпная плотность у мелкопористого она достигает 700 г/л, у круп-нопористого — 400—500 г/л. Удельная поверхность пор в зависимости от марки составляет 100—700 м /г. Механическая прочность выше у мелкопористого силикагеля. Качество силикагеля зависит, кроме того, от содержания примесей. Наличие в составе силикагеля оксидов металлов (алюминия, железа, магния и т, п.), являющихся активными катализаторами, вызывает нежелательные явления при регенерации — разложение адсорбированных веществ, образование смол, кокса и т. д., что резко снижает активность силикагеля. [c.89]

    Состав золы смол, выделенных из тонлив ТС-1 и Т-1, существенно различается. В смолах, выделенных из топлива ТС-1, найдено значительное количество цинка, тогда как в смолах, выделенных из топлива Т-1, цинк почти отсутствует. В золе смол. Выделенных из топлива Т-1, присутствует больше алюминия, железа, марганца. Содержание магния, никеля, титана, свинца во всех фракциях смол приблизительно одинаково. В золе смол, выделенных из топлива Т-1, найдено примерно в 10 раз меньше меди, чем в золе смол, выделенных из топлива ТС-1. [c.68]

    Известны органические иониты — природные (целлюлоза, желатина, шерсть, древесина, торф, сульфированные угли) и синтетические, а также неорганические — природные алюмосиликаты (аналь-цит, бентонит и др.), искусственные алюмосиликаты (пермутиты), гидроокиси алюминия, железа, бария и др. Широкое распространение получили синтетические высокомолекулярные органические иониты благодаря их высоким ионообменным свойствам, механической прочности и химической тoйкo ти " . [c.142]

    Металлы проявля.ют в своих соединениях только положительную окисленность, и низшая их степень окислещгости равна нулю. Иначе говоря, низшей степенью окисленности они обладают только в свободном состоянии. Действительно, все свободные металлы способны, хотя и в различной степени, проявлять только восстановительные свойства, Иа практике в качестве восстановителей применяют алюминий, магний, натрнй. калий, цинк и некоторые другие металлы. Если металлу присущи несколько степеней окисленности, то те его соединения, в которых он проявляет низшую нз них, также обычно являются восстановителями, например, соеди[ ения железа (И), олова (П), хрома (И), меди(1). [c.270]

    Латунь содсрукит до 4Ъ% цинка. Различают простые и специальные латуни. В состав последних, кроме меди и цинка, входят другие элементы, иапример, железо, алюминий, олово, кремний. Латунь находит разнообразное применение. Из нее изготовляют трубы для конденсаторов и радиаторов, детали механизмов, в частности, часовых. Некоторые специальные латуни обладают высокой коррозионной стойкостью в морской воде и [c.571]

    Катион многозарядный, анион однозарядный. Эта группа сс-лей крайне немногочисленна. Она включает ацетаты, иногда формиаты некоторых металлов, например алюминия, железа, магния, меди и др. Гидролиз их значительно усиливается при нагревании л приводит к образованию осадков гидроксосолей. Что же касаетс ч солей этих металлов, образованных другими одноосновными кислотами, таких, как нитриты, гипохлориты, гипобромиты, то практически эти соли не выделены вследствие полного и необратимого гидролиза. [c.138]

    По привесу фильтра можно судить о количестве сажи. Бели почему-либо надо определить природу сажи, ее последуют отдельио, определяя возможные примеои железа, алюминия и т. д.,  [c.397]


Смотреть страницы где упоминается термин Алюминий. Железо Алюминий: [c.466]    [c.73]    [c.366]    [c.13]    [c.111]    [c.71]    [c.70]    [c.516]    [c.78]    [c.89]    [c.261]    [c.398]    [c.165]    [c.72]    [c.509]   
Смотреть главы в:

Неорганическая химия -> Алюминий. Железо Алюминий




ПОИСК





Смотрите так же термины и статьи:

Железо алюминии



© 2025 chem21.info Реклама на сайте