Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализаторы и механизм каталитического риформинга

    КАТАЛИЗАТОРЫ И МЕХАНИЗМ КАТАЛИТИЧЕСКОГО РИФОРМИНГА [c.222]

    Дегидроциклизация до ароматических углеводородов. Превращение парафиновых углеводородов в ароматические является одной из наиболее важных и интересных реакций каталитического риформинга. Эта реакция известна менее двадцати лет [15, 29, 36], но и за этот период проделана огромная работа по улучшению катализаторов реакции и изучению ее механизма. [c.166]


    Таким образом, появление стадии окислительной регенерации значительно усложняет технологические схемы и аппаратурное оформление процессов. Она существенно влияет на их экономику, а для каталитического крекинга даже определяет рентабельность и конкурентоспособность различных вариантов этого процесса. История создания и развития таких важных каталитических процессов нефтепереработки и нефтехимии, как крекинг, риформинг, дегидрирование, гидрокрекинг и гидроочистка неразрывно связана с решением проблем окислительной регенерации используемых катализаторов. Естественно, чт0 эта стадия привлекает к себе пристальное внимание исследователей уже не одно десятилетие. Результаты ранних исследований закономерностей окисления кокса обобщены в работе [2], опубликованной 20 лет назад. С тех пор в научной литературе накоплены новые сведения по теории и практике окислительной регенерации катализаторов и назрела необходимость систематизировать и обобщить имеющийся материал, рассмотреть в тесной взаимосвязи характеристики кокса, образующегося на катализаторах, механизм и кинетику его окисления изменение свойств катализаторов при регенерации, основы промышленной технологии и аппаратурного оформления процесса. [c.4]

    Весьма чувствительна к дезактивации катализатора риформинга коксом также реакция ароматизации парафинов [103, 1041. Вероятно, это объясняется тем, что механизм реакции дегидроциклизации на платине включает стадию диссоциативной адсорбции, ведущей к образованию поверхностных ненасыщенных соединении, превращение которых может привести к коксообразованию. Особенно сильно увеличивается коксообразование. при каталитическом риформинге парафинов, начиная с ундекана. При этом возрастает выход полициклических ароматических углеводородов, склонных к конденсации [1051. [c.52]

    Таким образом, механизм гидрокрекинга включает как элементы механизма риформинга парафиновых углеводородов на бифункциональных катализаторах, так и элементы механизм каталитического крекинга парафинов.  [c.820]

    Основная причина дезактивации катализаторов на установке каталитического риформинга-их закоксовывание. В результате исследований обоснован трехстадийный механизм дезактивации катализаторов серии КР коксом и предложены эффективные способы осушествления процесса риформинга с учетом особенностей дезактивации катализатора на каждой стадии. [c.102]


    Однако процессу гидроформинга приходится в настоящее время выдерживать большую конкуренцию со стороны многочисленных разновидностей каталитического риформинга в присутствии полифункциональных катализаторов. Механизм реакций углеводородов различных классов, а также природа каталитической активности полифункциональных катализаторов и некоторые вопросы их промышленного использования будут рассмотрены дальше, в соответствующих главах настоящего раздела. Здесь же остановимся пока только на некоторых общих вопросах. [c.89]

    Детальный механизм реакций, протекающих в процессе каталитического риформинга, неизвестен. Были изучены превращения циклогексана, метилциклопентана, циклогексена и метил-циклопентена над тремя различными катализаторами, один из которых катализировал только изомеризацию, второй — [c.75]

    Каталитические процессы подразделяются на каталитический крекинг (катализатор — алюмосиликаты) и каталитический риформинг (катализаторы — платина, оксиды хрома и молибдена). В отличие от термических процессов, где расщепление углеводородов протекает по радикальному механизму, при каталитических процессах происходит ионный распад углеводородов. [c.314]

    Каталитический риформинг нефти в высокооктановый бензин заключается в получении парафинов и ароматических углеводородов из парафиновых и нафтеновых компонентов нефтяного сырья. В то время как ароматические углеводороды образуются из нафтенов с шестичленными циклами при их непосредственной дегидрогенизации, для образования ароматических углеводородов из нафтенов с пятичленными циклами требуется, кроме того, изомеризация в шестичленные циклы перед дегидрогенизацией в ароматические углеводороды. Платиновые катализаторы риформинга эффективно катализируют эти реакции. Данные катализаторы характеризуются наличием платины, связанной с твердой подложкой, относящейся к классу веществ, имеющих кислотные свойства (например, кремнезем, промотированный окисью алюминия, окись алюминия, содержащая галоген, и т. д.). Миле и сотрудники [1], которые предположили, что механизм изомеризации состоит в дегидрогенизации — гидрогенизации насыщенных углеводородов в промежуточные олефины и в скелетной перегруппировке, претерпеваемой промежуточными олефинами, назвали эти катализаторы бифункциональными . [c.649]

    О роли такого механизма реакции можно также судить по специфическому действию азотсодержащих соединений на каталитические свойства алюмоплатинового катализатора [17]. Органические соединения азота в условиях риформинга реагируют с образованием аммиака. Адсорбируясь на кислотных центрах и блокируя их, аммиак подавляет все реакция, протекающие с участием кислотных центров катализатора, в том числе и реакции дегидроциклизации парафинов. Так, добавление к -нонану диэтиламина (0,2% в пересчете на азот) приводит к снижению степени превращения нонана в ароматические углеводороды с 63 до 24%. При этом дегидрирующая активность катализатора полностью сохраняется, что подтверждено испытанием катализатора в реакции дегидрирования метилциклогексана. Следовательно, при отравлении катализатора аммиаком дезактивируется только его кислотная функция, что и обусловливает резкое снижение активности катализатора в реакции дегидроциклизации парафинов. [c.38]

    Из кислотных катализаторов наибольшее распространение в нефтеперерабатывающей и нефтехимической промышленности получили алюмосиликаты, галогениды алюминия, бора, сурьмы, оксид алюминия, сульфиды некоторых переходных металлов, а также ряд протонных кислот. Кислотные катализаторы используют в процессах каталитического крекинга, риформинга, изомеризации и других для ускорения реакций, протекающих по карбкатионному механизму. [c.331]

    В монографии систематизированы данные об основных причинах дезактивации моно- и полиметаллических платиносодержащих катализаторов риформинга и методах повышения их эффективности. Изложены сведения о кинетических и каталитических аспектах превращений углеводородов на катализаторах риформинга. Рассматривается механизм отравляющего действия сернистых соединений на химические и каталитические свойства алюмоплатиновых катали- [c.2]

    По аналогии с механизмами реакций, осуществляемых в процессах каталитического риформинга на платине (см. 10.2.2) и паровой конверсии углеводородов ( 9.1), можно предположить, что реакции гидрогенолиза гетероатомных углеводородов на АКМ и АНМ катализаторах потекают также многостадийно через хемо — сорбцию реактантон на активных центрах как кобальта (никеля), так и молибдена. При этом на кобальте (никеле) осуществляются активация Н и спилловер атомарного активного водорода, а на молиб — [c.211]


    В настоящее время в нефтепереработке существует целый ряд технологических каталитических процессов, в ходе которых в той или иной степени осуществляются различные превращения углеводородов. В качестве примера можно привести каталитический риформинг один из важнейших современных нефтехимических процессов, с помощью которого осуществляется глубокое изменение углеводородного состава бензинов. Каталитический риформинг позволяет получать в широких масштабах ароматические углеводороды — бензол, толуол, ксилолы. Они образуются в этом процессе путем нескольких реакций дегидрирования шестичленных нафтенов, Сз-дегидроциклизации алканов в алкилциклопентаны с последующей дегидроизомеризацией и, наконец, Се-де-гидроциклизации алканов. Этот и другие подобные производственные процессы возникли в результате чисто технологических разработок. Однако сейчас пути технологических и фундаментальных исследований постепенно сближаются. Эта тенденция дает определенный положительный эффект. Так, исследование механизма и кинетических закономерностей каталитических реакций углеводородов, а также использование опыта, накопленного при эксплуатации нескольких поколений моно- и биметаллических катализаторов риформинга, позволило создать ряд высокоэффективных и экономичных разновидностей процесса риформинга. [c.257]

    Исследования в области ароматизации парафинов на платиновых катализаторах риформинга проводйЛи главным образом в условиях, значительно отличающихся от применяемых в промышленном процессе. Поэтому полученные результаты, интересные с научной точки зрения, не позволяют прийти к однозначным выводам о роли и значении разных. механизмов ароматизации парафинов в каталитическом риформинге. Однако для этой цели можно в известной мере воспользоваться данными об изменении каталитических свойств, а следовательно, и относительных скоростей реакций, под влиянием некоторых факторов, связанных с условиями эксплуатации платиновых катализаторов риформинга. [c.37]

    Если такой механизм реакции справедлив и в некоторых случаях можно ожидать полной дегидрогенизации атомов углерода, то при гидрогенолизе парафинов может происходить зауглероживание металлических центров платиновых катализаторов риформинга. Справедливость такого предположения подтверждает промышленная практ ика каталитического риформинга,[761, Для подавления акти.в-ност кайлнШбрО риф рмйнга реакциях гидрогенолиза применяют разные методы (осернение, модифицирование добавками некоторых металлов— см. гл. 2), в результате чего эти реакции перестают играть существенную роль в нормальных условиях процесса. [c.44]

    В основе представлений о механизме изомеризации ароматических углеводородов лежат некоторые наблюдения. Так, установлено, что изменение условий каталитического риформинга в направлении, благоприятствующем гидрированию ароматических углеводородов (повышение давления, понижение температуры) способствует увеличению скорости их изомеризации [20, 86]. Другой фактор — значительное ускорение реакции изомеризации этилбензола при предварительном его гидрировании в этилциклогексан [86]. На этом основании полагают, что изомеризация ароматических углеводородов на бифункциональных платиновых катализаторах проходит при участии циклоиарафинов в качестве промежуточных продуктов. реакции. [c.47]

    По такому же механизму подвергаются изомеризации и другие полиалкилбензолы. Не исключено, что в жестких условиях каталитического риформинга, при высоких температурах, изомеризация полиалкилбензолов и, в частности, ксилолов может частично протекать также по другой кислотноткатализируемой реакции, аналогично идущей на алюмосиликатных катализаторах крекинга [89]. [c.48]

    По аналогии с механизмами реакций, осуществляемых в процессах каталитического риформинга на платине (см. 10.2.2) и паровой конверсии углеводородов ( 9.1), можно предположить, что реакции гидрогенолиза гетероатомных углеводородов на АКМ и АНМ катализаторах протекают также многостадийно через хемосорбцию реактантов на активных центрах как кобальта (никеля), так и молибдена. При этом на кобальте (никеле) осуществляются активация Н2 и спилловер атомарного активного водорода, а на молибдене протекают сульфирование (осернение), азотирование и окисление с образованием поверхностных соединений Мо(8), Мо(М) и Мо(0), которые под действием активированного водорода подвергаются десульфированию (обессериванию), деазотированию и восстановлению  [c.569]

    В 1925 г. Н. Д. Зелинский показал, что одной из основных причин уменьшения активности контактов при превращениях органических соединений является отложение углистых веществ кокса на поверхности катализатора [193]. Наибольший интерес к этой проблеме проявился с момента широкого внедрения в практику каталитических методов переработки нефтяного сырья. О важности вопроса говорит тот факт, что в ряде ведущих процессов нефтехимии и нефтепереработки затраты на борьбу с образованием кокса превышают затраты на проведение самого каталитического превращения [194]. Обзор материалов о механизмах коксообразования в зависимости от исходных органических веществ, катализаторов и условий процесса представлен в [195]. В работе [194] рассмотрены фундаментальные и прикладные проблемы закоксовываиия катализаторов при каталитическом превращении углеводородов и углеводородсодержащих веществ, дан анализ причин и механизмов закоксовываиия, химических и структурно-морфологических свойств разных видов кокса, механизмов дезактивации контактов вследствие закоксовываиия и путей регулирования этого процесса. Значительный вклад в изучение коксообразования на катализаторах крекинга и риформинга сделан М. Е. Левинтером с сотрудниками. [c.80]

    Одним из первых процессов каталитического риформинга был так называемый гидроформинг. Этот процесс осуществлялся при температуре порядка 480—550° С под давлением водорода 15—25 ат в присутствии алюмомолибденового катализатора (M0O3/AI2O3). В настоящее время почти все установки каталитического риформинга работают на платиновом катализаторе, а сам процесс получил название платформинга, или риформинга на алюмоплатиновом катализаторе. Платиновый катализатор представляет собой окись алюминия, на которую нанесено 0,5—0,6% платины. Катализатор содержит также некоторое количество фтора. Характер этого катализатора бифункциональный, т. е. он обладает одновременно двумя функциями. Окись алюминия имеет кислотный характер, особенно если она предварительно обработана кислотой. Благодаря этому на алюмоплатиновом катализаторе развиты реакции изомеризации, протекающие по карбоний-ионному механизму. Сама платина так же, как и другие- металлы VOI группы, является типичным дегидрирующим катализатором. Поэтому над алюмоплатиновым катализатором развиваются реакции дегидрирования шестичленных нафтенов и дегидроциклизации алканов. Процесс идет при температуре 480—520° С под давлением 20—37 ат, [c.216]

    Закоксование катализаторов. При каталитической переработке углеводородов основной процесс часто сопровождается вредными побочными реакциями — образованием коксовых отложений, которые, блокируя поверхность катализаторов, существенно снижают их активность и изменяют селективность. Зауглероживание катализаторов наблюдается для многих процессов крегинга [137, 160—165], риформинга [142, 166], дегидрирования [116, 167—171], дегидроциклизации [172], деструктивной гидрогенизации [173—175], гидрокрекинга [176], полимеризации [177], парофазной гидратации ацетилена [178] и др. Кокс, образующийся на поверхности катализаторов, всегда содержит некоторое количество водорода и по химическому строению представляет собой высококонденсированные ароматические уг.теводороды, приближающиеся к графиту. Образование кокса принято считать побочной стадией основного каталитического процесса. Закоксование катализаторов исследовалось во многих работах, однако вопрос о механизме образования кокса недостаточно ясен. [c.39]

    Выбор катализатора риформинга определяется механизмом реакций, протекающих на нем. Реакции гидрирования и дегидрирования протекают по окислительно-восстановительному механизму и катализируются металлами, реакции изомеризации и гидрокрекинга протекают по ионному механизму и катализируются кислотами. Поэтому, в каталитическом крекинге используются бифункциональные катализаторы состава Ме -Ь -ЬА120з , где Ме = молибден, платина, рений, А12О3 — катализатор изомеризации, промотируемый фторидами или хлоридами металлов, являющийся одновременно носителем. [c.144]

    На основе опыта, накопленного в риформинге, представляется возможным использовать серу для регулирования продукционной селективности в синтезе по Фишеру—Тропшу. Добавление серы используют в промышленности для смягчения избыточной активности свежих катализаторов риформинга, а также для улучшения продукционной селективности [31]. Показано [32, 33], что последовательное добавление серы к работающим платиновым катализаторам риформинга приводит к увеличению селективности и срока службы катализатора. Предполагаемый механизм заключается в частичном отравлении серой поверхности платины для снижения концентрации многочисленных активных мест на поверхности, что препятствует избыточной дегидрогенизации и зауглероживанию. Даже при очень больших концентрациях серы (до 2400 млн ) сохранялась хорошая каталитическая активность. [c.271]

    Носители металлических катализаторов не обязательно должны быть инертными. Независимо от того, каким образом носитель определяет морфологию нанесенного металла, он может непосредственно участвовать в каталитическом превращении, т. е. катализатор, состоящий из металла и носителя, может быть бифункциональным. Хорошо известны бифункциональные катализаторы риформинга, например платина на окиси алюминия или платина на цеолите, в которых кислотный носитель выступает как катализатор изомеризации по карбоииевому механизму, [c.37]

    Вопросы механизма действия катализаторов, химизма и кинетики рассматриваемых процессов производства моторных топлив (каталитического крекинга, риформинга, гидроочистки и производства водорода) изложены в специальной лигерагуре. [c.35]

    Приложением 2 предусмотрена разработка программ для следующих установок элеитрообессоливаю1Цих и обезвоживающих установок атмосферной и вакуумной перегонки термического крекинга газоочистки и газофракционирования каталитического крекинга с шариковым катализатором каталитического крекинга с микросферическим катализатором каталиютеского риформинга гидроочистки дизельного топлива селективной очистки масел депарафинизации и деасфальтизации масел коксования производства серной кислоты сернокислотного алкилирования производства серы этилосмесительных установок сосудов, работающих под давлением грузоподъемных механизмов трубопроводов для транспортировки горючих, едких и токсических веществ дегидрирования бутана и изопентана полимеризации изопрена полимеризации дивинилметилстирола выделения дивинила компрессоров поршневых, центробежных и газодувок насосов, а также по следующей тематике  [c.403]

    Манди Т., Шай 3., Штейнгаснер П. Влияние размеров кристаллов палладия на катализаторы риформинга.— В кн. Международный симпозиум по механизму гетерогенно-каталитических реакций и свойствам катализаторов, София, 1967, с. 36. [c.96]


Смотреть страницы где упоминается термин Катализаторы и механизм каталитического риформинга: [c.12]    [c.159]    [c.191]    [c.92]    [c.88]    [c.35]    [c.88]   
Смотреть главы в:

Химия и технология нефти и газа Издание 3 -> Катализаторы и механизм каталитического риформинга




ПОИСК





Смотрите так же термины и статьи:

Катализаторы механизм

Катализаторы риформинга

Каталитический риформинг

Риформинг

Риформинг каталитически

Риформинг каталитический механизм



© 2025 chem21.info Реклама на сайте