Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ароматические углеводороды масштабы производства

    Нитрование ароматических углеводородов — введение нитрогруппы—имеет особое значение прежде всего при производстве нитросоединеиий, используемых для получения аминов. Последние и в первую очередь анилин применяли раньше преимущественно для изготовления красителей. Теперь же масштабы потребления нитросоединений и синтезируемых из них ароматических аминов в большей степени определяются потребностями производства химикатов для резины, особенно арилизоцианатов и арилдиизо-цианатов [35—37]. Нитросоединения ароматического ряда используются также и в качестве взрывчатых веществ. [c.29]


    Исключительно большое значение для повышения продуктивности сельского хозяйства и сокращения затрат труда на уход за посевами имеют органические пестициды—химические средства защиты растений, гербициды, стимуляторы роста (стр. 335). Их ассортимент и масштабы производства непрерывно увеличиваются. Среди органических препаратов, применяемых для повышения урожайности, большое место занимают хлор- и фторпроизводные ароматических, алициклических и алифатических углеводородов, фосфорорганические соединения, различные эфиры и пр. [c.127]

    Увеличение производства фталевого ангидрида определяет существенное увеличение потребности в нафталине. Ресурсы коксохимического нафталина скоро будут исчерпаны и возникает необходимость изыскания его заменителей. Таким заменителем может быть, например, уже упомянутый выше о-ксилол. Разработан ряд схем получения нефтехимического нафталина. Сырьем для производства последнего могут быть газойли каталитического крекинга, содержащие по 25% гомологов нафталина. Применяя гидрогенизационное деалкилирование экстракта, состоящего из бициклических ароматических углеводородов, можно получить нафталин. В США были созданы мощности по производству нефтехимического нафталина, равноценные масштабу производства нафталина коксохимической промышленностью (себестоимость нефтехимического нафталина выше, чем коксохимического [18]). На рис. 4.1.6 приведена схема получения нефтехимического нафталина. [c.122]

    Высокая химическая активность ароматических углеводородов, их способность к донорно-акцепторным взаимодействиям с полярными соединениями объясняет их большую, чем у других классов углеводородов, физиологическую активность и высокую токсичность. При этом ароматические углеводороды лучше растворимы в воде, чем другие углеводороды, легче образуют аэрозоли, эмульсии и суспензии. Большие масштабы производства и потребления ароматических углеводородов, их широкое использование в различных областях народного хозяйства делает особенно важными профилактические меры по зашите от неблагоприятных воздействий ароматических углеводородов. - - [c.317]

    Нужные для промышленности высшие углеводороды извлекают из продуктов нефтепереработки или синтезируют. В больших масштабах получают, например, бутадиен для производства синтетического каучука, ароматические углеводороды для производства взрывчатых веществ и различных других химических продуктов, а также и простейшие нафтены. [c.8]


    В СССР в промышленных масштабах нефть добывается так же давно, как и в США. Нефтеносные площади Баку известны в течение столетий как источники нефти и газовых факелов. Наиболее богатые нефтяные месторождения расположены между Черным и Каспийским морями, а также в районах несколько севернее и восточнее этой области [3, 24, 40]. Существует предположение, что в дальнейшем добыча будет развиваться в центральных районах Азии, на тысячу миль и более к востоку от Баку и к северу от Афганистана. Можно считать, что нефтеносные структуры и свиты напоминают нефтеносные структуры и свиты США. Около одной трети перспективных площадей лежит севернее 60° северной широты, и разработка их представляет некоторые затруднения Старые месторождения Баку (плиоценовые свиты) дают нефти смешанного основания, содержащие мало серы и довольно большие количества смолистых и асфальтовых веществ. Эти нефти характеризуются низким содержанием бензиновых фракций (менее Ю ), низким содержанием ароматических углеводородов но высоким содержанием нафтеновых и изопарафиновых углеводородов и поэтому довольно высоким октановым числом. Только в некоторых месторождениях, как, например, в Сураханском, добываются нефти более парафинового основания, используемые в качестве сырья для производства керосина и смазочных масел. Грозненские нефти (миоцен) обладают более высоким содержанием бензиновых и керосиновых фракций (25 и 15%), [c.56]

    Производство ароматических углеводородов из нефти известно давно, но в промышленном масштабе стало осуществляться только после второй мировой войны. [c.55]

    В- крупных масштабах в промышленности организовано производство всех изомеров ксилола. В значительно меньших объемах производятся псевдокумол, дурол, мезитилен и цимолы. Основным источником получения ароматических углеводородов Са— Сю являются процессы переработки нефти. Химические продукты коксования угля практически нигде не используются для выделения отдельных изомеров ксилола и лишь в очень незначительном масштабе применяются для получения углеводородов Сд. Для отдельных компонентов разрабатываются и применяются различные методы синтеза. [c.247]

    При необходимости организовать в широких масштабах производство моющих и других поверхностно-активных продуктов на базе природных ароматических углеводородов среднего молекулярного веса, тракторные керосины подгруппы Д 2-й группы нефтяного сырья могут быть переработаны методами селективной, адсорбционной или химической экстракции. [c.97]

    Вопросам использования полициклических ароматических углеводородов посвяш,ено большое число статей и монографий. Во многих из них отмечается уникальность этого сырья, потенциальная возможность получения из него разнообразных ценных веществ [125]. Однако мировое производство большинства полициклических ароматических углеводородов, кроме антрацена, составляет всего сотни килограмм, тонны и десятки тонн в год, т. е. для нужд исследовательских работ и для некоторых малотоннажных производств. Ниже рассмотрены причины несоответствия между высокой оценкой потенциальных возможностей использования полициклических ароматических углеводородов и малыми масштабами их фактического потребления, а также тенденции, развитие которых может привести к массовому производству ценных продуктов. [c.100]

    Современный период характеризуется созданием на основе ароматических углеводородов производства таких многотоннажных продуктов, как пластические массы, каучуки и синтетические волокна, что потребовало резкого расширения сырьевой базы. Коксохимическая промышленность, масштабы которой определяются потребностью в металлургическом коксе, не смогла удовлетворить растущий спрос на бензольные углеводороды, Расход кокса благодаря совершенствованию доменного процесса снизился за последние десятилетия с 800—900 до 500—560 кг на 1т чугуна в среднем по металлургической промышленности. Возможно и дальнейшее сокращение расхода кокса, хотя в 1980—1985 гг. он вряд ли будет меньше 350—400 кг/т чугуна [1, 2]. В результате снижения расхода кокса при сравнительно небольших темпах роста производства черных металлов (5,2—5,3% в год) объемы производства кокса и побочных продуктов коксования за последние годы в большинстве стран стабилизировались (темпы роста не более 2,4% в год) [3]. [c.145]

    Производство ароматических углеводородов в СССР имеет некоторые особенности, вызванные наибольшими в мире масштабами развития коксохимической промышленности в сочетании с относительно замедленными темпами производства ароматических углеводородов из нефти до 1970 г. В 1975 г. на долю коксохимической промышленности в СССР приходилось 55% общей выработки бензола, 100% выработки нафталина и антрацена [13]. Увеличение в три раза мощностей нефтехимических производств в СССР в период 1976—1980 гг. означает существенный рост доли нефтехимии в производстве бензола и в нашей стране [14]. [c.147]


    В то время как химия каменноугольной смолы базируется на ограниченных сырьевых ресурсах таких соеднненкн, как ароматические углеводороды — бензол, толуол, нафталин и антрацен, фенол, крезол и т. д., промышленность алифатических продуктов располагает практически неограниченными ресурсами углеводородного сырья. Сырьевые ресурсы коксобензольной промышленности ограничиваются каменноугольной смолой они значительно меньше, чем ресурсы промышленности алифатических соединений, включающие нефть и продукты синтеза Фишера — Тропша. Поэтому промышленная переработка алифатических углеводородов уже достигла в настоящее время громадных масштабов. Производство специальных бензинов, растворителей, мягчителей, пластификаторов, пластмасс, синтетических моющих средств, вспомогательных материалов для текстильной промышленности, эмульгаторов и других продуктов в количественном и ценностном выражениях уже значительно превысило продукцию коксобензольной промышленности и приближается к соответствующим показателям основной неорганической химической промышленности. [c.10]

    Естественно, что из-за ограниченных масштабов производства полициклических ароматических углеводородов существующие цены на реактивы высоки. Даже отпускные цены на аценафтен и технический антрацен составляют соответственно 1350 и 1200 руб/т, а отпускная цена на 2-метилнафталин равна 9300 руб/т. Это определяется, кроме малых масштабов производства, низкой производительностью труда, большим объемом ручного труда, потерями растворителей, реактивов и исходного сырья. Разработанные отраслевыми институтами способы производства, основывающиеся на физических методах разделения (ректификация, кристаллизация— плавление, ректификация с растворителями), позволяют на крупных установках получать вещества с себестоимостью 120—200 руб/т, что может сделать их перспективным химическим сырьем для синтеза крупнотоннажных продуктов. [c.315]

    Рассмотренные методы производства мезитилена достаточно сложны и, но-видимому, технико-экономические показатели процессов не позволяют организовать многотоннажное производство. В небольших масштабах мезитилен можно получить при ректификации ароматических углеводородов Сд с целью выработки псевдокумола (см. ниже) с последующим выделением мезитилена из головной узкой фракции методом сульфирования. Такая технология применяется в коксохимической промышленности при получении в небольших количествах технического мезитилена [15, 30, 31]. [c.222]

    Большая часть смеси ароматических углеводородов С9, образующихся в процессе каталитического риформинга, используют в качестве компонента автомобильного бензина. Из изомеров ароматических углеводородов С 9 в промышленных масштабах выделяют псевдокумол. который идет для производства тримеллитового ангидрида [111 в дальнейшем, по-видимому, найдут применение мези-тилен и эти.лтолуолы. Изопропилбензол (кумол) производят в больших количествах путем алкилирования бензола пропиленом его используют главным образом для получения фенола. [c.8]

    По сравнению с газообразными олефинами жидкие олефины еш е пе находят широкого применения в химической промышленности. Их используют для производства синтетических смазок, присадок, снижающих температуру застывания, в качестве компонентов алкилирования ароматических углеводородов и фенолов, а в последнее время все в больших масштабах как исходный материал для производства высших алифатических спиртов гидроформилированием. [c.41]

    Реакция каталитического превращения этих групп углеводородов в ароматические, открытая в 1935 г. советскими учеными (Н. Д. Зелинским, я также Б. Л. Молдавским и др.), быстро была реализована в заводских масштабах, и производство ароматических углеводородов такими методами возрастает непрерывно до настоящего времени. Например, в США только за период 1955—1959 гг. мощности каталитического риформинга возросли от 87 до 270 тыс. м в сутки. [c.11]

    Характерной особенностью газа, получаемого при коксовании каменного угля, является наличие в нем ароматических углеводородов, количество которых составляет 30—40 г/м . Извлечение их позволяет существенно улучшить экономические показатели коксования. Следует отметить, что вплоть до середины XX в. коксохимия была практически единственным поставщиком ароматических соединений для химической промышленности. В настоящее время ее роль в этом отношении существенно снизилась, так как основным источником ароматических углеводородов теперь является нефтехимия. Тем не менее вследствие очень крупных масштабов мирового производства кокса количество бензольных углеводородов, получаемых в этом процессе в качестве побочных продуктов, весьма велико и вносит весомый вклад в сырьевую базу промышленности крупнотоннажного органического синт за. [c.142]

    В промышленном масштабе процесс селективной очистки нефтяных фракций избирательными растворителями был впервые применен в 1911 году для очистки керосинов от ароматических углеводородов сернистым ангидридом. Однако научно-исследовательские работы по применению избирательных растворителей в нефтеперерабатывающей промьпиленности широко развернулись только в 20-х годах. Значительное распространение различных процессов селективной очистки и депарафинизации при производстве нефтяных масел избирательными растворителями началось лишь в 30-х годах. [c.3]

    Термический крекинг твердых парафинов был первым промышленным процессом производства высших а-олефинов, но он не позволял получать сг-олефины высокого качества из-за присутствия большого количества примесей, в частности днолефи-иов и ароматических углеводородов. Этот процесс, хотя и в небольших масштабах, применяют в настоящее время. Он отличается большим расходным коэффициентом нормальных [c.160]

    Отмеченное выше противоречие возникло еще с довоенных лет и за последние годы не произошло принципиальных изменений в характере потребления и масштабах производства полициклических ароматических углеводородов, несмотря нЬ очень большой объем исследований, выполненных за этот период. Интерес к по-лициклическим ароматическим углеводородам определяется некоторыми особенностями их строения. Большинство их флюоресцирует при облучении, и кристаллические полициклические ароматические углеводороды используются как сцинтилляторы. Полициклические ароматические углеводороды и получаемые на их основе хиноны являются отличными хромоформными системами и служат сырьем для синтеза многочисленных красителей. [c.100]

    Изомеризация. Хорошо разработанный процесс представляет сОбой каталитическая изомеризация пентана. Точно так же в промышленном масштабе нашла себе применение и изомеризация гексана. Однако с точки зрения производства моторного топлива изомеризация этих углеводородов в процессе каталитического риформинга имеет небольшое значение. Это объясняется тем, что в большинстве случаев октановые числа фракций С 5—С в достаточно высоки и нет необходимости прибегать к каталитическому риформингу этих фракций. Кроме того, они не нуждаются в рифор-мииге ввиду достаточно хорошей приемистости к тетраэтилсвинцу. Однако образование ароматических углеводородов и особенно бензола из фракции С6 требует изомеризации парафиновых углеводородов этой фракции. Объектом глубокого изучения является изомеризация парафинов фракции С,. Эти исследования еще не привели к созданию промышленного процесса, хотя теоретически реакция представляет интерес для повышения октанового числа парафиновых углеводородов фракции С 7. Главное до-стоилство этой операции заключается в получении исключительно больших теоретических выходов высокооктановых изомеров. Однако на практике наличие в продукте нафтеновых и ароматических уг.певодородов, а также тенденция к диспропорционированию между высоко и низкокипящими фракциями значительно затрудняют промышленную реализацию этого процесса. По-видимому, парафиновые углеводороды фракции С. являются наиболее высококипящими из тех, которые целесообразно подвергать изомеризации, так как углеводороды фракций Сз, С и Сщ даже после низкотемвературной изомеризации до равновесного состояния над катализаторами Фриделя-Крафтса неспособны повысить октановое число фракций настолько, чтобы удовлетворить требованиям сегодняшнего дня. [c.165]

    Со времени первого сообщения Фриделя и Крафтса в 1877 г. [125] о том, что хлористый алюминий катализирует алкилирование ароматических углеводородов, эта реакция стала предметом большого числа исследований и обзоров [75, 123, 235, 256, 294]. Реакция широко применяется при проведении синтетических работ в лабораториях [256]. Она также имеет весьма большое значение для нефтяной пролтышленности. Так, алкилирование по Фриделю—Крафтсу применяется в настоящее время в больших масштабах для синтеза этилбензола, стирола, кумола, для производства фенола и алкилата , а также детергентов (см. гл. LV11). Согласно оценке алкилирование бензола для производства стирола потребляет около 45% общего количества производимого бензола. [c.428]

    Нужно вспомнить, что общепринятая сернокислотная очистка всегда причиняла значительные неудобства. Смолистые и асфальтовые вещества, некоторые реакционноспособные соединения серы и азота и углеводороды не могут быть выделены в чистом виде. Кроме того, сброс продуктов реакции и извлечение отработанной кислоты затруднителен и дорог. При сольвептной экстракции, однако, продукты с высоким содержанием парафинов противостоят окислению и сравнительно свободны от коксообразующих веществ, которые извлекаются в виде экстракта, пригодного для дальнейших превращений, например в асфальт или котельное топливо. Экстракция используется в таких процессах, как обработка газойлей и керосиновых дистиллятов для получения высококачественных реактивных и дизельных топлив и для повышения качества исходного сырья каталитического крекинга [61]. Выделение ароматических углеводородов высокой концентрации этим методом применяется в больших масштабах. Он стал особенно важным в военных условиях 1940—1945 гг. для производства нитротолуола и для других химических производств [62, 63]. [c.275]

    В производстве и использовании ароматических углеводородов можно выделить два этапа, характерные для всех промышленноразвитых стран. Длительное время основным источником получения ароматических углеводородов были побочные продукты коксования каменного угля сырой -бензол и каменноугольная смола. Этот период характеризовался разнообразным ассортиментом продуктов, получаемых из ароматических углеводородов (красители, фармацевтические препараты, взрывчатые вещества), но сравнительно небольшими масштабами их производства. Массовое развитие транспорта привело к широкому потреблению ароматических углеводородов в качестве высокооктановых компонентов бензинов. [c.145]

    Из ароматических углеводородов широко применяют в органическом синтезе нафталин в значительно меньших масштабах вырабатывают дурол, из которого изготовляют пиромеллитовый диангидрид. В основном нафталин производит коксохимическая промышленность, в последние годы в США были введены мощности по производству нафталина из нефтяного сырья путем гидродеалки-лирования различных ароматизированных фракций нефтепереработки. В США нафталин, вырабатываемый из нефтяного сырья, составляет примерно 40% от его общего потребления [12]. [c.8]

    Потенциальные ресурсы ароматических углеводородов С 9 в продуктах каталитического риформинга достаточно велики. Однако до настоящего времени в промышленных масштабах выделяют только псевдокумол. Разработанные методы получения этилтолуолов и мезитилена обладают недостаточно высокими технико-экономическими показателями для крупных промышленных установок. Поэтому применение этих углеводородов для организации массового производства химических продуктов на их основе задерживается. В связи с развитием новых методов выделения в ближайшие годы, по-види- [c.298]

    Очень важно отметить, однако, что успехи химии, достигнутые на уровне ее третьей концептуальной системы, были обусловлены не только массивом научных знаний первых двух концептуальных систем, но и социальным заказом. Они появились как нельзя более своевременно, подоспев к тому времени, когда в развитии общественных производительных сил наметились сдвиги, приведшие позднее, в 1950—1960-х годах, к современной научно-технической революции. Уже в первой трети XX в. перед химией были поставлены такие задачи, которые до этого никогда не решались в промышленных масштабах. Появилась необходимость в создании многотоннажного производства а) аммиа1ка из элементов как главного источника азотсодержащих удобрений для сельского хозяйства и азотной кислоты для развития основной химической промышленности, б) изопарафиновых и ароматических углеводородов для по- [c.144]

    О масштабах использования химических реагентоз в нефтегазодобывающей промышленности можно судить по следующим данным. Неф-тегазодобываюшими управлениями (НГДУ) ПО Башнефть за годы одиннадцатой пятилетки использовались от 85 до 127 наименований различных соединений и реагентов (ингибиторов коррозии, деэмульгаторов, кислот, щелочей, синтетических жирных спиртов, синтетических жирных кислот, спиртов, бактерицидных препаратов, ароматических углеводородов и др.). Объем использованных препаратов составлял несколько десятков тысяч тонн в год. В целом по стране эти показатели выглядят еще более внушительными перечень применяемых химических реагентов различного функционального назначения по Министерству нефтяной промышленности СССР составляет более 250 наименований, в том числе около 200 отечественного производства. Общее количество используемых реагентов исчисляется сотнями тысяч тонн. [c.4]

    Используя углеводороды, получающиеся при перечисленных выпге термических и каталитических процессах переработки нефтяного сырья, направленных на получение различного топлива, а также развивая специальные процессы нефтепереработки, можно получать непредельные алифатические и ароматические углеводороды для крупнотоннажных химических производств в количествах, полностью обеспечивающих планируемые на ближайшие 7 лет огромные масштабы развития нефтехимической промышленности, в том числе производство пластмасс, синтетических каучуков, волокон, синтетических моющих веществ и пр. [c.14]

    Олефины и ароматические углеводороды в присутствии кислорода и аммиака (окислительный аммонолиз) превращаются в соответствующие нитрилы. Эти процессы весьма перспективны, и производство нитрилов непрерывно возрастает. Например, видное место занимает получение акрилонитрила совместным окислением пропилена и аммиака кислородом воздуха. Так, в США фирма Monsanto Polymer а. Petro hem [1, 2] построила в штате Техас крупный завод по окислительному аммонолизу пропилена с удвоенной мощностью по сравнению с 1974—75 гг., который вырабатывает 400 млн. т акрилонитрила в год. В других странах масштабы производства акрилонитрила окислительным аммонолизом пропилена составляют (в тыс. т в год) [1, 2]  [c.9]

    Производство простейших моноциклических ароматических углеводородов в большом масштабе обеспечивается благодаря успешной реализации в промышленности процесса каталитического риформинга (платформпнга) бензинов прямой перегонки нефти. Как видно из данных табл. 1.8, в США [c.23]

    До разработки процессов каталитического риформинга ксилолы получали в промышленном масштабе только из каменноугольного дегтя. Высокоарома-тизированные риформинг-бензины оказались превосходным источником легких ароматических углеводородов, выделяемых в процессах экстракции такими растворителями, как сернистый ангидрид или диэтиленгликоль. Уже в 1954 г. производство смешанных ксилолов из каменноугольного дегтя составило около 30 тыс. т, в то время как производство их из нефтяного сырья достигло 330 тыс. т. Поэтому, когда появились крупные потребители нараксилола, удовлетворение этой потребности пошло по линии нефтяного ксилола, а не каменноугольного. [c.81]

    Из высших ароматических углеводородов можно получать многочисленные интересные производные. Ряд нефтяных и химических компаний изучает потенциальные области применения производных полиметилбензолов. Особое впимание уделяют окислению этих моноциклических ароматических углеводородов для получения кислот или ангидридов, которые могут применяться в производстве эпоксидных и алкидных смол. Хотя некоторые из высших ароматических углеводородов представляют в связи с этим большой интерес, до сего времени ни один из них не выделяют в крупном промышленном масштабе. По имеющимся сведениям фирма Синклер пустила небольшую промышленную установку производства дурола (ароматический углеводород Сю), а фирма Хамбл вырабатывает из специально выделяемых фракций опытные партии углеводородов Сд и Сю [2]. Имеются все основания ожидать в недалеком будущем перехода на промышленные масштабы производства некоторых тяжелых ароматических углеводородов и продуктов их дальнейшей переработки. [c.271]

    Хотя сообщений о строительстве крупных промышленных установок в печати не было, фирма Хамбл выпускает этот изомер Сд в полупромышленном масштабе н елезподорожными цистернами фирма Синклер также начала производство псевдокумола [2]. Большие потенциальные ресурсы псевдокумола в ароматической фракции Сд и легкость выделения этого углеводорода позволяют ожидать, что в случае достаточно крупного масштаба производства он будет сравнительно дешев. По предварительным подсчетам цена псевдокумола при крупном объеме производства будет лежать в пределах 26—33 цент/кг. Однако для строительства крупных промышленных установок требуются достаточно емкие и устойчивые рынки сбыта. Хотя псевдокумол еще не выпускается в количествах, которые позволили бы создать крупные промышленные рынки его потребления, можно предполагать, что для большинства областей потребуется продукт чистотой 95 %. [c.272]

    Крупным источником ароматических углеводородов являю ся пиролизные смолы — побочные продукты производства олеф нов. Масштабы производства пиролизных смол увеличиваютс из-за общего увеличения мощностей по изготовлению олефинс и полиолефинов, которые составляют в развитых промышленнь странах несколько миллионов тонн в год. Так, мировое прои водство этилена в 1970 г. составило 16,6 млн. т, пропилена- [c.115]

    Подводя итог изложенному выше, можно отметить, что имеются очень крупные источники производства ароматических углеводородов и суш,ествуют реальные возможности увеличения производства последних почти в любом количестве, если возникнет такая необходимость. Масштабы производства фенолов, кроме собственно фенола, пока относительно невелики по сравнению с суш,ествуюш,им производством сырья, и поэтому развитие промышленности синтетических фенолов не вызовет серьезных затруднений с сырьем. Созданию предприятий, изготовляюш,их синтетические фенолы из углеводородного сырья, способствуют также относительно низкие цены на ароматические углеводороды. [c.124]

    Ароматические углеводороды окисляются с участием С—Н-связей боковой цепи до соответствующих аралкилгидропероксидов. Первичные гидропероксиды (из толуола, и-ксилола) обычно получаются, с низким выходом [29—31]. Содержание, например, п-метилбензил-гидропероксида в оксидате составляет 1,2% при температуре окисления 60° С и времени 150 час. [32]. Вторичные гидропероксиды получают с большими выходами. Так, выход 1-фенилэтилгидропероксида при окислении этилбенэола при 135—160° С в присутствии карбонатов и бикарбонатов составил 50% при 15%-ном содержании его в оксидате, а в случае проведения реакции в мягких условиях (гетерогенный катализ) выход удалось повысить до 96% [33, 34]. Третичные гидропероксиды синтезируют методом жидкофазного окисления в промышленных масштабах. Промышленное производство кумилгидропероксида было создано впервые в СССР в 1949 г. благодаря работам Сергеева, Удриса, Кружалова и Немцова [35, 36] и на этой [c.219]

    Наряду с коксом, выход которого составляет 70—80%, образуются летучие продукты. При их охлаждении и разделении получают надсмольную аммиачную воду (или сульфат аммония), смолу, обогащенную ароматическими углеводородами, и высококалорийный топливный газ. Большие масштабы металлургической промышленности и соответствующие мощности по выработке кокса, обуславливают получение значительных количеств побочных продуктов коксования, исчисляемых сотнями тысяч тонн в год. Вследствие этого приблизительно до середи-дины XX в. коксохимия была основным поставщиком сырья для крупнотоннажного тяжелого и тонкого органического синтеза. В настоящее время коксохимия в этом отношении заметно уступает нефтеперерабатывающей и нефтехимической промышленности, но тем не менее вклад коксохимических продуктов в сырьевую базу производства пластмасс, химических волокон, синтетических каучуков, красителей и других продуктов достаточно велик. [c.80]

    Для многих заводов развитие в указанном направлении оказалось невозможным, так как рентабельность производства достигается только при весьма значительных масштабах, что требует крупных капиталовложений и обширных сырьевых ресурсов. Новый процесс производства нефтехимических продуктов—алкар— можно использовать для производства широкого ассортимента алкилированных ароматических углеводородов на нефтеперерабатывающих заводах любой мощности. [c.199]


Смотреть страницы где упоминается термин Ароматические углеводороды масштабы производства: [c.277]    [c.437]    [c.102]    [c.4]    [c.14]    [c.9]    [c.95]    [c.224]    [c.242]   
Производство сырья для нефтехимических синтезов (1983) -- [ c.187 ]




ПОИСК







© 2024 chem21.info Реклама на сайте