Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение молочной кислоты в крови

    Определение молочной кислоты в крови [c.237]

    Если не считать колориметрических определений, то описанный выше метод является в настоящее время единственным методом, дозволяющим определять молочную кислоту в количествах порядка нескольких микрограммов. Однако известны также другие методы, с помощью которых можно определять молочную кислоту в несколько больших количествах. Одним из них является диффузионный метод Винника [63], описанный также Конвеем [4]. При определениях с помощью этого метода исходят из 1 мл крови. Белок и глюкозу осаждают и отделяют по методу, описанному выще. Прозрачный раствор вводят во внешнюю камеру диффузионной кюветы Конвея. Во внутреннюю камеру помещают требуемое количество раствора бисульфита натрия (в методе Винника объем этого раствора составляет 1—1,5 мл). К анализируемому раствору добавляют насыщенный раствор сульфата церия в 2 н. серной кислоте, после чего кювету немедленно плотно закрывают. Выдерживают кювету в течение 5 час. при комнатной температуре или в течение 2 час. при -Ь50°, после чего проводят титрование раствора бисульфита, как это описано выше. Вполне возможно, что если использовать небольшого размера стеклянную диффузионную кювету типа Конвея и соответственно уменьшить количества анализируемого раствора и реактивов, то этот метод может оказаться вполне подходящим для определения молочной кислоты в количествах порядка нескольких микрограммов. Однако экспериментальная проверка этого предположения еще никем не произведена. [c.239]


    Содержащиеся в крови белок и глюкоза мешают определению молочной кислоты. Поэтому перед определением их следует удалить из анализируемого образца. Для анализа берут 100 X цельной крови или сыворотки. [c.238]

    При анализе желудочного сока определяют общее количество его, цвет, запах, наличие слизи, общую кислотность, свободную соляную кислоту, связанную соляную кислоту, присутствие в соке молочной кислоты, желчи и крови. Проводят определение активности пепсина. [c.161]

    Э. М. Плисецкой и Л. Г. Огородниковой, показали, что под влиянием инсулина в мышцах куриных эмбрионов отчетливо уменьшается содержание молочной кислоты (рис. 3). Это уменьшение вполне отчетливо выражено у зародышей моложе 15—16 дней. У более зрелых эмбрионов оно может быть обнаружено лишь в отдельных случаях, а у вылупившихся цыплят совсем отсутствует. Как показало одновременное определение содержания сахара в крови, уменьшение концентрации лактата в мышцах может быть легче всего объяснено резкой гипогликемией. Между степенью ее и понижением [c.185]

    Одной из органических кислот, содержание которой в крови и моче может быть довольно значительным, является молочная, кислота. Определение ее см. выше Продукты неполного окисления углеводов и липидов , [c.321]

    Капилляры мозга окружены слоем специальных клеток (клетки глии), которые служат как бы барьером, защищающим мозг от проникновения определенных молекул. Глюкоза — единственный пищевой продукт, который может быстро проникать через этот барьер. Постоянное содержание глюкозы в крови необходимо для нормальной работы всех тканей и особенно мозга. Механизм метаболизма клеток головного мозга полностью не выяснен, но известно, что глюкоза превращается в молочную кислоту, которая окисляется в двуокись углерода и воду через пировиноградную кислоту. В мозгу содержится очень мало гликогена, поэтому для 352 снабжения мозга требуется определенный минимальный уровень [c.352]

    Каждый механизм энергообразования имеет определенные резервы, которые раскрываются или развиваются в процессе адаптации к специфической физической тренировке. Аэробная производительность спортсменов, специализирующихся в видах спорта на выносливость, зависит от адаптационных изменений мощности и емкости аэробного механизма энергообеспечения мышечной деятельности. Емкость аэробного механизма, которая в значительной степени определяется запасами гликогена в скелетных мышцах и печени, а также уровнем утилизации О2 мышцами, существенно повышается уже в течение 1,5—2 месяцев тренировки на выносливость (рис. 132). Мощность аэробного механизма, которая зависит от МПК и активности окислительных ферментов, также увеличивается в процессе адаптации к мышечной деятельности через 2—3 месяца тренировки. Значительно повышается активность окислительных ферментов (табл. 24). Более медленно происходит увеличение емкости капилляров и доставка кислорода в мышцы. Увеличивается количество гемоглобина в крови и миоглобина в мышцах, количество, величина и плотность митохондрий, что повышает способность мышц утилизировать кислород и осуществлять аэробный ресинтез АТФ. В таких условиях повышается способность тренированных мышц окислять пировиноградную кислоту, что предотвращает накопление молочной кислоты, а также усиливает окисление жиров. Это обеспечивает более эффективное выполнение длительной работы. [c.323]


    При интенсивной гликолитической работе в мышцах резко увеличивается содержание молочной кислоты. Она способна быстро диффундировать из работающих мышц в кровь, где ее уровень резко повышается, а окисление во время напряженной работы протекает с относительно малой скоростью, поэтому содержание молочной кислоты в крови в определенной степени отражает скорость образования ее в скелетных мышцах. В состоянии покоя концентрация молочной кислоты в крови составляет 1,1— 2,2 ммоль л (0,1—0,2 г л" ). [c.342]

    Таким образом, изменение концентрации молочной кислоты в крови после выполнения определенной физической нагрузки связано с состоянием тренированности спортсмена. По изменению ее содержания в крови [c.468]

    На долю белков саркоплазмы приходится 25-30% от всех белков мышц. Среди саркоплазматических белков имеются активные ферменты. К ним в первую очередь следует отнести ферменты гликолиза, расщепляющие гликоген или глюкозу до пировиноградной или молочной кислоты. Еще один важный фермент саркоплазмы — креатинкиназа, участвующий в энергообеспечении мышечной работы. Особого внимания заслуживает белок саркоплазмы миоглобин, который по строению идентичен одной из субъединиц белка крови - гемоглобина. Состоит миоглобин из одного полипептида и одного гема. Молекулярная масса миоглобина - 17 кДа. Функция миоглобина заключается в связывании молекулярного кислорода. Благодаря этому белку в мышечной ткани создается определенный запас кислорода. В последние годы установлена еще одна функция миоглобина - это перенос Ог от сарколеммы к мышечным митохондриям. [c.126]

    Еще один метод оценки скорости гликолиза, фиксирующий последствия образования и накопления молочной кислоты, - это определение щелочного резерва крови. Щелочной резерв крови - это щелочные компоненты всех буферных систем крови. При поступлении во время мышечной работы в кровь молочной кислоты она вначале нейтрализуется путем взаимодействия с буферными системами крови (с их щелочными компонентами), и поэтому происходит снижение щелочного резерва крови. [c.147]

    Данные для отдельных индивидов различались не только по высоким или низким значениям тех или иных показателей крови, но и по другим признакам. У одного индивида, например, содержание креатинина в крови колебалось очень сильно и в отдельных определениях разнилось вдвое. Между тем у большинства исследуемых этот показатель отличался большим постоянством в одном случае он даже оставался неизменным при определении в 6 пробах. У одного исследуемого было обнару жено относительно высокое содержание в крови сахара, креатинина, мочевины, мочевой кислоты и молочной кислоты и ни для одного из показателей не было найдено низких значений у другого было установлено сравнительно низкое содержание в крови ацетилхолинэстеразы. [c.12]

    Высокая субстратная специфичность ферментов делает их совершенно уникальными аналитическими реактивами с помощью фермента можно определить его субстрат в смеси, содержащей множество других веществ. Ферментные методы определения концентрации метаболитов в крови и других жидкостях организма широко используются в практике клинического лабораторного анализа. Этими методами измеряют содержание глюкозы, мочевины, мочевой кислоты, молочной кислоты, креатинина, холестерина, триацилглицеринов и других веществ. [c.100]

    Глюконеогенез обеспечивает потребности организма в глюкозе в тех случаях, когда диета содержит недостаточное количество углеводов. Постоянное поступление глюкозы в качестве источника энергии особенно необходимо для нервной системы и эритроцитов. При понижении концентрации глюкозы в крови ниже определенного критического уровня нарушается функционирование мозга при тяжелой гипогликемии возникает коматозное состояние и может наступить летальный исход. Глюкоза необходима также для жировой ткани как источник глицерола, входящего в состав глицеридов она играет, вероятно, существенную роль в поддержании эффективных концентраций интермедиатов цикла лимонной кислоты во многих тканях. Из этого следует, что даже в условиях, когда большая часть потребностей организма в калориях обеспечивается за счет жира, всегда сохраняется определенная потребность в глюкозе. Кроме того, глюкоза служит единственным видом топлива для работы скелетной мышцы в анаэробных условиях. Она является предшественником молочного сахара (лактозы) в молочных железах и активно потребляется плодом в период развития. Следует отметить также, что механизм глюконеогенеза используется для удаления из крови [c.196]

    Приведенный нил<е метод является модификацией метода, применявшегося Баркером и Саммерсоном [3] для определения молочной кислоты в биологических материалах, Стоцем [4] — для определения ацетальдегида в крови и Джайангом и Смитом для определения метальдегида (тетрамера ацетальдегида) н растительных материалах. Вещество подвергают гидролизу серной кислотой, образующийся ацетальдегид отгоняют в водный раствор бисульфита и затем его вводят в реакцию с /г-фенилфенолом в присутствии концентрированной серной кислоты и иона двухвалентной меди. Образуется соединение, окрашивающее раствор в фиолетовый цвет, максимум поглощения при 572 нм (рис. 10.2). [c.400]


    В последнее время большое распространение приобрел способ определения молочной кислоты по Баркеру и СамМерсону хотя и есть указания, что для цельной крови способ дает завышенные результаты. [c.237]

    Колориметрическое определение. Основной метод колориметрического определения молочной кислоты в крови [99] подвергался некоторым изменениям [100]. Исследуемую кровь освобождают от белков, действуя метафосфорной кислотой, и от углеводов, действуя сульфатом меди остаток медных солей осаждают окисью кальция. Полученный раствор молочной кислоты обрабатывают чистой концентрированной серной кислотой и по охлаждении приливают к нему 0,125-процентный раствор вератрола в абсолютном спирте. Появляющаяся в присутствии молочной кислоты красная окраска колориметрируется через 20 мин. Требуется строгое соблюдение разработанных условий особенно приходится заботиться о тщательной очистке всех применяемых пипеток и стаканчиков (очистка серной кислотой), так как в загрязненной посуде вместо прозрачного светлокрасного раствора можно получить грязносерый или зеленый раствор, см. также [101, 102]. [c.250]

    Таким путем удается добиться и разделения сахаров. Хроматография на бумаге была применена для качественного анализа редуцирующих сахаров в таких разнообразных материалах,. как яблочный сок, яичный белок и кровь [49, 216]. Для локализации положения отдельных сахаров на бумаге был применен аммиачный раствор окиси серебра, хотя в более поздней работе указывается, что флуоресценция, появляющаяся после конденсации редуцирующего сахара с ж-фенилендиамином, дает более надежные результаты. Как силикагель, так и фильтровальная бумага были применены для хроматографического разделения органических кислот, выделенных из фруктов [99, 139]. На этом же принципе основано определение молочной кислоты в молоке и янтарной — в яичных продуктах [60]. Особый интерес для биохимика представляет применение хроматографии на бумаге для разделения пуринов, пиримидинов и нуклеозидов из гидролизата нуклеиновой кислоты [134]. Удалось улучшить метод определения витамина В в рыбьих жирах и продуктах облучения эргостерина, основанный на измерении характерной абсорбции в ультрафиолетовом свете или интенсивности окраски производных с треххлористой сурьмой точность определения была значительно повышена после хроматографического удаления примесей, мешающих определению [79, 95]. [c.164]

    Если в результате определения на окисление бисульфита, полученного при разложении бисульфитного соединения, оказались израходованными 0,4 мл 0,01 н. раствора йода, то количество молочной кислоты в мл исследуемой крови 0,4X0,45=0,18 мг (содержание молочной кислоты в крови 18 л<г%).. Ошибка определения около 5%. [c.112]

    Этот электрод успешно применялся для определения этанола в крови. Ошибка при определении этанола в сыворотке крови может быть обусловлена, во-первых, непосредственной реакцией фермента с другими субстратами и, во-вторых, расходом кислорода на неферментативные реакции, например с аскорбиновой кислотой или цистеи-ном. В первом случае некоторые карбоновые кислоты и оксикислоты (уксусная, муравьиная, молочная, оксимасляная, пировиноградная и хлоруксусная кислоты) окисляются алкогольоксидазой и тем самым мешают определению спирта в крови. Мешающее действие молочной кислоты, содержащейся в сыворотке крови, можно снять, добавив к пробе перед анализом лактатдегидрогеназу. Во втором случае мешающие вешества предварительно определяют при тех же условиях с платиновым электродом в отсутствие фермента [255]. Установлено, что ни одно из веществ, обычно имеющихся в крови, например аскорбиновая кислота, цистеин, фенилаланин, глюкоза, мочевая кислота, не реагирует на электроде. В то же время ферментный электрод чувствителен к альдегидам и карбоновым кислотам так же, как и к спиртам, и поэтому его можно использовать для определения и альдегидов, и кислот. [c.90]

    По своему составу доставляемые кровью питательные вещества отличаются от белков, жира и сахара, которые мы находим в молоке. В самом деле, характерные составные части молока — его белок (казеиноген) и молочный сахар — в готовом виде не имеются ни в крови, ни в других органах тела. Следовательно, азотистые вещества, имеющиеся в крови, подвергаются в молочной железе существенной перестройке для образования характерного для молока сложного белка казеиногена. То же относится и к сахару. Лактоза является дисахаридом, состоящим из глюкозы и галактозы с кровью же в молочную железу доставляется глюкоза. (Следовательно, в молочной железе часть глюкозы крови превращаеся в галактозу, а затем здесь же осуществляется синтез лактозы. Ни в каких других органах синтез лактозы не происходит. Жир молока хотя и близок по составу к другим жирам организма, но все же имеет и свои особенности. Так, молочный жир содержит меньше стеариновой и больше низших жирных кислот (масляной, капроновой, каприловой и т. д.), чем другие жиры тела. Молочная железа, таким образом, несколько перестраивает и жиры, приносимые с кровью. Кроме того, молочная железа, как и другие органы, обладает способностью превращать углеводы в жиры. У жвачных животных жиры молока синтезируются с большой интенсивностью из уксусной кислоты, возникающей в процессе распада тех или иных веществ. Увеличение содержания фосфорных соединений, в частности фос( )атидов, в молочной железе в период лактации указывает на определенную связь мел<ду деятельностью железы и накоплением фосфорных соединений. [c.453]

    Принцип метода. Из пробы плазмы, цельной крови или эритроцитов удаляют белки пикриновой кислотой. Кипячением удаляют растворенную или связанную СОг из фильтрата. Затем в герметически закрытом и эвакуированном сосуде обрабатывают эту пробу нингидрином, отщепляющим СОг из карбоксилов свободных альфа-аминокислот. Освобожденная СОг переводится в манометрический аппарат Ван-Слейка—Нейлля, где она сначала поглощается не содержащим СОг едким натром. Затем СОг вытесняется из щелочного раствора молочной кислотой и измеряется давление при объеме газа в 0,5—2,0 мл. После этого в аппарат вносится небольшое количество 5 н. NaOH, поглощающего СОг, и снова измеряется давление. Разность обоих определений с вычетом поправки на холостой опыт равняется давлению углекислоты, освобожденной из альфа-аминокислот. Дается таблица, где приведены факторы, на которые нужно множить (при различной температуре) наблюденное дав- [c.142]

    Вытеснение СО2 и измерение давления СО2. В капилляр верхней чашечки манометрического аппарата вносят каплю октилового спирта. Затем в чашечку наливают 1 мл 2 н, молочной кислоты почти насыщенной Na l, При опущенной груше прибора осторожно всасывают кислоту в камеру, закрывают верхний кран, опускают уровень ртути до черты 50 и трясут камеру в течение 3 минут (не IV2 минуты, как при определении СО2 крови, так как прибавка Na l ускоряет поглощение СО2 едким натром и замедляет вытеснение ее молочной кислотой). Затем осторожно впускают ртуть в камеру до объема газа в 2,0 мл и измеряют давление. Записывают показания манометра и термометра. Далее, в воронку прибора вливают 0,5 мл 5 н. NaOH, немного опускают грушу, открыв кран на сообщение с ней. Осторожно через верхний кран впускают щелочь и закрывают кран. Если вязкая жидкость задерживается под краном, вводят следом за ней 1—2 капли ртути. Жидкость в камере немедленно поднимается вследствие поглощения СО2. Снова доводят до объема в 2. мл и снова измеряют давление. Записывают показание манометра. Давление СО2 будет  [c.148]

    При уменьшении интервалов отдыха между упражнениями до 1 мин еще наблюдается отставленный максимум потребления О , что свидетельствует об активизации процессов восполнения алактатных анаэробных резервов с каждым очередным повторением максимального усилия. Однако он исчезает, когда продолжительность интервалов отдыха сокращается до 30 с. Вместо этого появляется пилообразная кривая с наивысшими значениями скорости потребления в конце каждого повторения максимального усилия и небольшим снижением в паузах отдыха. После первых 5—6 повторений упражнения и дальше скорость потребления не изменяется, устанавливаясь на определенном уровне, соответствующем тяжести выполняемой интервальной работы, что в данных условиях зависит от величины избранных интервалов отдыха. Если интервалы отдыха сокращаются до 10 с, уровень пикового потребления при выполнении упражнений сравнивается с величиной МПК. Сокращение интервалов отдыха в этих условиях сопровождается усилением при первых 5—6 повторениях избыточного выделения Og, быстрым накоплением молочной кислоты и снижением pH крови (рис. 186). Значительное закисление внутренних сред организма в результате накопления молочной кислоты в крови (более 10 ммоль л ) ведет к снижению скорости креатинфосфокиназной реакции и максимальной мощности. Дальнейшее увеличение числа повторений приводит к изменению тренировочного эффекта интервальной работы он приобретает смешанный аэробно-анаэробный характер. Поэтому если в интервальном методе применяются кратковременные максимальные усилия, чередуемые с короткими интервалами отдыха (менее 30 с), то для создания алактатного анаэробного эффекта тренировки такую работу следует выполнять сериями по 5—6 повторений в каждой с интервалами отдыха между сериями не менее 3 мин. [c.398]

    Наряду с исследованием крови и мочи для оценки гликолитического пути ресинтеза еще может быть использовано определение лактатного кислородного долга. Лактатный кислородный долг - это повышенное потребление кислорода в ближайшие 1-1,5 часа после окончания мышечной работы. Этот избыток кислорода необходим для устранения молочной кислоты, образовавщейся при работе (более подробно био- [c.147]

    Установлено, что фосфаты не только способствуют распаду углеводов в организме, но и ускоряют всасывание моносахаридов. Часть фруктозы и галактозы в кишечной стенке фосфорилируется и затем превращается в глюкозу. Эти три моносахарида взаимопревращаемы. Обратимое превращение фруктозы, глюкозы в галактозу и обратно связано с участием фосфорной кислоты и соответствущих ферментов. Особенно важно превращение глюкозы в галактозу в молочной железе, которая синтезирует из них молочный сахар — лактозу. В составе крови всегда содержится определенное количество глюкозы, часть которо используется молочной железой. [c.312]

    Кишечная флора играет известную пололштельную роль для организма. При описании переваривания клетчатки (стр. 263) мы указывали на важную роль кишечной флоры, особенно для жвачных животных. Расщепление клетчатки сопровождается образованием в кишечнике уксусной, молочной, янтарной и других кислот, которые всасываются кишечником в кровь и используются в тканях организма. Наряду с этим, под влиянием микробов в кишечнике образуются газы — метан, водород, углекислый газ, а из серусодержащих аминокислот — сероводород. Под влиянием определенных бактерий в толстых кишках расщепляются тирозин, триптофан, цистеин, аргинин, лизин, гистидин с образованием протеиногенных аминов и других веществ. Следует подчеркнуть, что с количественной стороны бактериальное расщепление аминокислот в толстых кишках сравнительно незначительно и охватывает лишь ничтожную долю аминокислот, появляющихся в кишечнике при переваривании белков, так как аминокислоты по мере своего образования всасываются. Учитывая, однако, высокую ядовитость некоторых продуктов гниения аминокислот в толстых кишках, приходится считаться с возможностью отрицательного влияния на организм кишечной флоры, особенно в тех случаях, когда имеют место сдвиги в ее качественном и количественном составе. [c.361]

    Гипервитаминоз. Введение витамина даже в тысячекратной по сравнению с физиологическои, дозе не оказывало токсического эффекта Оценка обеспеченности организма витамином В, . Для этой цели слу жит определение содержания витамина в сыворотке крови, либо оп ределение суточной экскреции метилмалоновои кислоты котора возрастает при низкои обеспеченности организма кобаламином в десятки и сотни раз. Иногда применяется также метод нагрузки с помощью парентерального введения меченного по кобальту витамина В Суточная потребность. Пищевые источники. Синтез кобаламинов в природе осуществляется исключительно микроорганизмами. Животные и растительные клетки такой способностью не обладают Основ ные пищевые источники витамина печень, мясо (в нем обалами на в 20 раз меньше, чем в печени), морские продукты (крабы лососевые, сардины), молоко, яйца. У строгих вегетарианцев, исключающих из пиши не только мясные, но и молочные про укты р но или поздно развивается В, -дефицитная анемия. [c.49]


Смотреть страницы где упоминается термин Определение молочной кислоты в крови: [c.656]    [c.201]    [c.309]    [c.318]    [c.318]    [c.488]    [c.411]    [c.532]    [c.88]   
Смотреть главы в:

Количественный ультрамикроанализ -> Определение молочной кислоты в крови




ПОИСК





Смотрите так же термины и статьи:

Кислоты в крови

Молочная кислота

Определение молочной кислоты в крови — Определение кетоновых тел в моче и крови



© 2025 chem21.info Реклама на сайте