Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Применение гидролиза для очистки

    Очистка воды с применением гидролизующихся коагулянтов является следствием нескольких одновременно протекающих процессов хемосорбции, образования малорастворимых комплексов, их полимеризации и кристаллизации, флокуляции, взаимодействия образовавшихся полиядерных формаций с поверхностью дисперсной фазы. Комплекс процессов, протекающих при гидролизе коагулянта, приводит к полимеризации и кристаллизации продуктов гидролиза, образованию малорастворимых коагулянтов, которые обволакивают частицы взвеси и, объединяясь, образуют агрегаты, способные к осаждению. При этом влияние pH на хлопьеобразование сводится к влиянию концентрации ионов Н+ и ОН на состав и структуру продуктов гидролиза. Процесс коагуляции характеризуется не только флокуляционным механизмом, но и электростатическими явлениями, приводящими к снижению заряда минеральных частиц, что обусловлено влиянием катионов АР+ и Ре + и их комплексов. [c.22]


    Нитробензол, несмотря на высокую селективность, нашел ограниченное применение для очистки масел вследствие его высокой токсичности. Хлорекс при регенерации перегонкой с водяным паром образует в результате гидролиза хлористоводородную кислоту, вызывающую сильную коррозию аппаратуры. Одним из [c.201]

    Преобладающее количество вырабатываемого хлорида железа используется, для очистки питьевой, промышленных и сточных вод. Преимущества применения для очистки питьевой воды хлорида железа вместо сернокислого алюминия следующие хлопья гидроксида железа осаждаются быстрее, более благоприятны условия дозировки коагулянта и, наконец, эффективность действия РеСЬ почти в 2—3 раза выше, чем сернокислого алюминия. К недостаткам хлорида железа как коагулянта относится присутствие в нем РеСЬ оно гидролизуется медленнее и превращается в гидроксид Ре(ОН)з, который выпадает в виде хлопьев, но не на очистительной станции, а в водопроводной сети и у потребителей воды. Кроме того, если превысить дозировку РеСЬ, нарушаются требования стандарта по цветности воды. Хлорид железа, применяемый для очистки питьевой воды, не должен содержать мышьяка и солей тяжелых металлов. Расход его в зависимости от состава воды колеблется от 10 до 15 г/м . [c.389]

    Пример технического применения коагуляции —очистка воды, предназначенной для водоснабжения городов. Естественные воды обычно содержат в высокодисперсном и коллоидном состоянии минеральные и органические вещества, которые не задерживаются песчаными фильтрами. Все природные коллоиды (гидрозоли) заряжены отрицательно. Очищают их солями алюминия или железа, эти соли в растворе гидролизуются и образуют положительно заряженные золи гидроокисей, которые, взаимодействуя с коллоидами воды, подвергаются взаимной коагуляции с образованием осадка, легко поддающегося фильтрованию. [c.246]

    Пароциркуляционный метод обесфеноливания основан на переходе фенолов в паровую фазу и распределении их между паровой и жидкой фазами в соотношении 2 1. Этот метод применим в тех случаях, когда в сточных водах находятся только одноатомные фенолы. Процесс протекает в две стадии сначала фенол выдувается из сточной воды циркулирующим паром, а затем поглощается из азеотропной смеси раствором щелочи. Степень очистки сточных вод пароциркуляционным методом составляет 90—92%. Этот метод внедрен на коксохимических заводах , однако еще не нашел применения при очистке промышленных стоков производства феноло-формальдегидных смол, так как из-за присутствия в водах перегоняющихся с паром фенолов и гидролизом фенолятов не удается достичь глубокой степени обесфеноливания. Кроме того, при использовании дан- [c.12]


    Ниобиевые и танталовые продукты высаливания растворяются в разбавленных кислотах без остатка. Из этих растворов ниобий и таптал можно осадить гидролизом при кипячении. Гидролиз может найти применение для очистки ниобия и тантала от редких земель, железа и других осаждающихся спиртом примесей. [c.143]

    ПРИМЕНЕНИЕ ГИДРОЛИЗА ДЛЯ ОЧИСТКИ [c.144]

    Активная окись алюминия. Активная окись алюминия используется для производства катализаторов процессов риформинга, изомеризации, гидроочистки, гидрокрекинга и др. Широкое применение находит она также в процессах адсорбции (для осушки газов, очистки масел, очистки газов и жидкостей от фторсодержащих соединений). В промышленных масштабах ее получают переосаждением гидрата глинозема путем его растворения в кислотах (серной, азотной) или в щелочи (едком натре) с последующими гидролизом, формовкой, сушкой и прокаливанием. Свойства синтезированной окиси зависят от структуры и морфологии исходной гидроокиси, а также от условий термообработки. Существует большое число модификаций окиси алюминия. Их классификация, обозначения, условия получения даны в [30, 31 ]. В промышленности активная окись алюминия [c.387]

    В заключение отметим, что реакции ионного обмена нашли широкое применение в различных областях науки и техники для очистки и получения солей, извлечения ценных металлов из природных и сточных вод, для разделения и открытия катионов й анионов, для концентрации и очистки витаминов, умягчения и обессоливания воды, получения (путем гидролиза) глюкозы, ксилозы, этилового спирта, многоатомных спиртов, пищевых органических кислот и других веществ. [c.47]

    Из солей наибольшее применение находит сульфат алюминия. Его используют для очистки воды, при крашении и печатании тканей, для дубления кож и в производстве бумаги. Желатинообразный осадок гидроксида алюминия, образующийся при гидролизе сульфата алюминия, способствует закреплению краски на тканях при их крашении и печатании. В производстве бумаги гидроксид алюминия, осаждаясь между волокнами целлюлозы, играет роль уплотняющего и проклеивающего материала. [c.178]

    Гидролиз жиров может быть ускорен применением различных катализаторов, например серной кислоты. По предложению Г. С. Петрова, для этой цели успешно применяются сульфокислоты (стр. 53), получаемые как побочный продукт при очистке нефти серной кислотой (контакт Петрова). [c.189]

    Применение коагулянтов позволяет очищать сточные воды от коллоидных и высокомолекулярных вредных прим,есей. Однако при этом образуется хлопьевидный осадок, компонентами которого являются продукты гидролиза химических реагентов в сочетании с загрязняющими примесями. Это осадок содержит значительное количество влаги, находящейся как в различных связанных формах с компонентами осадка, так и в свободном состоянии. Захоронение этого объемистого обводненного шлама оказывается все более сложным, так как потребление коагулянтов для очистки промышленных сточных вод быстро возрастает и условия аккумуляции шламов противоречат требованиям охраны окружающей среды. Поэтому в технологии водоочистки все более актуальной становится задача регенерации и утилизации осадка. [c.28]

    Полученный раствор смешивают с 0,5 мл хлористого тионила и кипятят с обратным холодильником в течение 10 мин., после чего прибавляют 5 мл концентрированной соляной кислоты и вновь кипятят в течение 3 час. с обратным холодильником для гидролиза ацетамидо-[п-быс- (2-хлорэтил) -аминобензил-а-С / ]-малонового эфира (примечание 5). Затем смесь упаривают в вакууме, а остаток растворяют в 5 мл воды и обрабатывают углем. К водному раствору прибавляют ацетат натрия и отделяют выпавший осадок. Выход 0,315 г (89%). Очистку осуществляют непосредственно перед дальнейшим применением препарата перекристаллизацией из метилового спирта. Радиохимический выход в расчете на карбонат-С бария 22%, т. пл. 177—178° (разл.) (примечание 6). [c.336]

    Применение ионитов в пищевой и гидролизной промышленности. В пищевой промышленности в сахарном производстве иониты применяются для рафинации диффузионных соков [298, 299]. Иониты используют также в крахмало-паточном производстве, при очистке сахаросодержащих растворов, получаемых в результате гидролиза древесины, в производстве дрожжей. [c.124]

    В литературе описано множество процессов гидролиза сульфохлоридов и очистки сульфокислот, образующихся в результате реакции. Эти операции очень важны с практической точки зрения, так как они значительно улучшают свойства продукта. Во многих случаях сульфохлориды очищают перед проведением гидролиза очистку производят, например, экстракцией растворителем-спиртом, нитрометаном или жидким сернистым ангидридом [2731. Для отделения сульфохлоридов от непрореагировавших продуктов применяется также образование нерастворимых в углеводородах комплексов с пиридином [2741 сульфохлориды стабилизуются обработкой аммиаком и формальдегидом [2751 или гидрированием в мягких условиях [2761. Гидролиз сульфохлоридов облегчается применением смеси органических оснований с едким натром [2771, а также применением каустической соды при температуре выше 100° [278]. Натриевые соли сульфокислот очищают от неомыленных продуктов экстракцией спиртами или низшими углеводородами [2791. Вещества с малым содержанием неорганических галогенидов получаются при гидролизе сульфохлоридов раствором едкой щелочи или основания щелочноземельного металла в низшем спирте [2801. Описан также процесс очистки, заключающийся в отгонке неомыляемых продуктов [2811 в других методах используется обработка продуктов реакции раствором ЫаС1 [2821, отбеливание восстановителями [283], возвращение в обратный цикл на стадии омыления непрореагировавших углеводородов [284]. [c.48]


    Для очистки воды от взвешенных примесей используются магнитные фильтры производительностью до 120 м /ч при начальной концентрации взвешенных частиц 600—800 мг/л, обеспечивающие очистку на 85—90 %. Магнитная обработка растворов способствует увеличению степени гидролиза солей, препятствует образованию накипи на стенках теплообменной аппаратуры. Под действием магнитного поля возрастает поверхностная активность реагентов и увеличивается их растворимость в воде. Обработка реагентов в магнитном поле позволяет увеличить степень извлечения продуктов при флотационном обогащении руд на 1,5—16 %. Обработка растворов в магнитном поле увеличивает эффективность шламо-улавливания на 3—4 % В то же время после магнитной обработки стоков размеры кристаллизующихся примесей уменьшаются и одновременно снижается скорость их осаждения, что усложняет проблему выделения шлама. Эффект обработки зависит не только от напряженности магнитного поля и времени контакта жидкости с магнитами, но и от химического состава обрабатываемой жидкости. Так, например, при концентрации свободной углекислоты в стоке более равновесной (Асоз > 0)/Ср > 1, при концентрации равной равновесной (Дсоз = 0) Д"р= 1 магнитная обработка неэффективна. Повышение температуры стока делает обработку ее магнитным полем более эффективной. Использование метода магнитной обработки не вносит дополнительных соединений в стоки и газы, а его применение, как показывают технико-экономические расчеты, позволяет значительно сократить затраты на установки для переработки газообразных и жидких выбросов. [c.483]

    Серная кислота как реагент для очистки нефтяных фракций применялась непрерывно с 1852 г, В этом процессе образуются органические сульфонаты они были выделены, но получили промышленное нрименение лишь спустя много лет благодаря двум обстоятельствам. Во-первых, пробудился интерес к возможности полезного применения органических сульфонатов вообш,о, а затем введение в употребление сульфированного касторового масла ( турецкое красное масло ) в тек стильной промышленности в 1875 г. и открытое Твитчелом в 1900 г. каталитическое действие сульфокислот нри гидролизе ншров с образованием жирных кислот и глицерина. Во-вторых, развитие в России производства минеральных белых масел, потребовавшего применения более жесткой кислотной обработки, чем практиковавшаяся до тех пор для легкой очистки естественно, что при этом получились большие количества сульфонатов как побочных продуктов сульфирования. Вскоре было выяснено, что эти сульфокислоты бывают главным образом двух типов растворимые в масле ( красные кислоты ) и не растворимые в масле или растворимые в воде ( зеленые кислоты ). Несколько лет спустя эти продукты начали находить промышленное нрименение как реагенты Твитчелла и как ингредиенты в композициях в процессах обработки кожи и эмульсируемых ( растворимых ) масел. Оба направления продолжали развиваться так быстро, что к началу второй мировой войны спрос на эти продукты, получавшиеся в качестве побочных продуктов, начал превосходить предложение их. Это особенно справедливо в отношенип растворимого в масле типа сульфонатов, применяемых в эмульсионных маслах, в металлообрабатывающей промышленности, в противокоррозийных композициях и как добавки к смазкам для быстроходных двигателей. [c.535]

    Однако, несмотря на указанные достоинства, иониты в основном используются в лабораторных условиях > (реакции этерификации, гидролиза, гидратации, дегидратации, алкилирования, полимеризации, конденсации и др.). В промышленности же широкие возможности методов ионообменного катализа не нашли пока достаточного применения. Из промышленных процессов с ионитами, осуществленных или внедряемых в СССР, отметим алкилирование фе-нoлoв " , гидратацию изобутилена и дегидратацию триметилкарби-нола П -1 , синтез дифенилолпропана очистку фенолов . [c.146]

    По масштабам производства и применения соляная кислота занимает третье место после серной и азотной кислот. Соляная кислота применяется для получения хлоридов металлов, хлорида аммония, в гидролитических процессах (гидролиз целлюлозы и др.), для очистки поверхности металлов (травление). Для снижения коррозионной активности в соляную кислоту вводят ингибиторы, заш иш аюш ие металл, но не препятствуюш ие растворению оксидной пленки. [c.350]

    Некоторые соли А1(1П) получили практическое применение. Квасцы KAI(S04)2-12НгО используются (в качестве протравы) в текстильной промышленности и при дублении кож. Безводный хлорид AI I3 — мощный катализатор в органическом синтезе. Реакция гидролиза солей А1(1П), например сульфата, используется при очистке воды — образующийся при разведении соли А1(1П) осадок гидроокиси А1(ОН)з, имеющий сильно развитую поверхность, сорбирует и уводит в ил большое число нежелательных примесей. Нитрат алюминия используется в качестве высаливателя при экстракции [1]. [c.60]

    Известны попытки использования газообразного BFg для деазотирования нефтепродуктов [106]. В последующем реагент отдували воздухом. Позже для этих целей был предложен комплекс HFg-H. O с последующим отделением продуктов центрифугированием и обработкой рафината известью и отбеливающей землей. Работы в данной области в США и в других странах продолжаются, что объясняется простотой и технологической гибкостью процессов очистки с применением BF,, возмолшостью простым изменением расхода реагента получать необходимую степень очистки от любых гетероорганических соединений. Однако метод очистки с BF3 имеет существенный недостаток — необходимость тщательной очистки готового продукта от следов BF3, что обусловлено его склонностью к гидролизу с образованием сильной гидроксофторборной и плавиковой кислот. [c.99]

    При температуре воды I контура 300° С фосфат циркония подвергался гидролизу и образовывалась НзРОз с равновесной концентрацией - 2-10 зоуд Это обстоятельство ограничивает область применения фосфата циркония для очистки реакторных вод. Двуокись циркония при зтих условиях практически ке растворя- [c.195]

    Получение. Необходимым условием достижения высоких электрофиз. характеристик П. м. является их глубокая очистка от посторонних прнмесей. В случае Ge и Si эта проблема решается путем синтеза их летучих соед. (хлоридов, гидридов) и последующей глубокой очистки этих соед. с применением методов ректификации, сорбции, частичного гидролиза и спец. термич. обработок. Хлориды особой чистоты подвергают затем высокотемпературному восстановлению водородо.м, прошедшим предварит, глубокую очистку, с осаждением восстановленных продуктов на кремниевых или германиевых прутках. Из очищенных гидридов Ge и Si выделяют путем термич. разложения. В результате получают Ge и Si с суммарным содержанием остаточных электрически активных примесей на уровне 10 -10 %. Получение особо чистых полупроводниковых соед. осуществляют синтезом из элементов, прошедших глубокую очистку. Суммарное содержание остаточных примесей в исходных материалах не превышает обычно 10 " -10 %. Синтез разлагающихся соед. проводят либо в запаянных кварцевых ампулах при контролируемом давлении паров летучего компонента в рабочем объеме, либо под слоем жидкого флюса (напр., особо чистого обезвоженного В2О3). Синтез соед., имеющих большое давление паров летучего компонента над расплавом, осуществляют в камерах высокого давления. Часто процесс синтеза сонме- [c.59]

    В лабораторной практике нашел применение метод по- учения о-нитробензальдегида посредством окисления о-ни-тротолуола хромовым ангидридом в среде уксусного ангидрида и последующего гидролиза образующегося о-нитрсбенз-альдиацетата (1, 2]. Согласно имеющимся в литературе прописям, омыление диацетата ведется минеральными кислотами, [Ь 2] или кальцинированной содой [3] получаемый при этом продукт бывает сильно загрязнен смолистыми примесями и для очистки его необходимо перегонять с водяным паром. Эта операция требует громоздкого аппаратурного оформления, отнимает много времени и ограничивает масштабы синтеза. [c.152]

    Таким образом, применение коагулянтов эффективно для очистки сточных вод от поверхностно-активных веществ различных классов в присутствии красителей. Удаление красителей из сточиых вод методом коагуляции также в ряде случаев оказывается достаточно эффективным. На эффективность очистки влияет в значительной мере агрегатное состояние красителей в растворе [24, 25]. Удаление красителей при коагуляции продуктов гидролиза солей алюминия и железа происходит в результате сорбции их иа хлопьях гидроксидов или соосаждсния скоагулировавших в присутствии солей трехвалентных металлов высокодисперсных нерастворимых частичек или крупных ассоциированных агрегатов красителей. При этом сорбат, образующий в процессе коагуляции собственную твердую фазу, не имеет предела насыщения на кривой изотермы сорбции. [c.24]

    Диализ представляет собой давно известный способ очистки, применяемый для удаления растворимых примесей из золей. Как только были разработаны способы получения разбавленных золей кремнезема по реакции между кислотой и силикатом или гидролизом подходящего вещества, такого, например, как тетрахлорид кремния, то сразу же было признано, что для удаления электролита требовалась очистка. Еще Грэм [1266], один из самых первых исследователей золей кремнезема, в 1861 г. использовал диализ для удаления электролитов из кремнеземной системы и, таким образом, приготовлял относительно чистыц коллоидный кремнезем. Поскольку процесс диализа протекает относительно медленно, он не находит широкого применения в промышленных масштабах. Поэтому был предложен более быстрый способ, не требующий использования плоских мембран. В нем предусматривается пропускание золя через колонну или слой, заполненный набухшим полимерным гелем с такой тонкопористой структурой, что через него способны проникать только растворимые соли, но не коллоидные частицы. Полимерный гель может представлять собой способные к регенерации целлюлозу или желатин, поперечное связывание у которых осуществляется [c.458]

    Некоторое время считалось, что анализ ионных или ионогенных соединений следует проводить методом ион-париой хроматографии с обращенными фазами. Однако в настоящее время исследователи останавливают свой выбор либо на традиционном варианте ионообменной хроматографии, либо на хроматографии с применением немодифициро-ванного силикагеля или оксида алюминия. В последнем случае применяют водные растворители и буферы. Хроматография на немодифицированном силикагеле или оксиде алюминия имеет существенные преимущества по сравнению с ОФ-вариаитом. Во-первых, свойства сорбента не меняются от партии к партии, во-вторых, сорбенты в меньщей степени подвержены гидролизу и, наконец, при анализе таких проб, как сыворотка, не требуется предвар1ггельная очистка [275]. Оксид алюминия ие изменяет своих свойств при использовании водных элюентов с pH от 2 до 12. Силикагель растворим в воде при рН>8, однако этот недостаток может быть преодолен при насыщении растворителя силикагелем в фор-колонке. При использовании ТСХ описанные преимущества реализуются наилучшим образом (см. разд. 1П, Б, 2). Учитывая взаимное влияние буфера, растворенного вещества, рК, состава элюента и pH, можно варьировать условия и тем самым оптимизировать процесс разделения. Разработанные [c.399]

    Применение ионитов в медицине, биологии и фармацевтической промышленности. Важной областью применения ионитов является производство, выделение и очистка антибиотиков (пенициллина, стрептомицина, биомицина и других) [3, 321, 322]. В биологии иониты применяются для разделения аминокислот, деионизации и очистки продуктов гидролиза белков. Создана новая ионитовая технология производства алкалоидов — морфина, кофеина, кодеина и др. Весьма перспективно применение комплексообразующпх анионитов в процессах выделения ванилина, гваякола, салициловой кислоты из производственных вод [325]. [c.125]


Смотреть страницы где упоминается термин Применение гидролиза для очистки: [c.15]    [c.218]    [c.404]    [c.106]    [c.276]    [c.196]    [c.111]    [c.83]    [c.357]    [c.78]    [c.228]    [c.477]    [c.62]    [c.28]    [c.426]   
Смотреть главы в:

Очистка сточных вод в химической промышленности -> Применение гидролиза для очистки




ПОИСК





Смотрите так же термины и статьи:

Очистка применение



© 2024 chem21.info Реклама на сайте