Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основные принципы химической кинетики

    Важный вывод, который следует отсюда сделать, состоит в том, что мгновенная скорость реакции —определяется концентрацией, а не активностью реагента. Как мы видели в гл. 4, в этом состоит один из основных принципов химической кинетики, который успешно использовали при рассмотрении ионных реакций Бренстед, Бьеррум и Христиансен. [c.300]


    Скорость реакции. Основной принцип химической кинетики можно сформулировать следующим образом скорость реакции (число молей, реагирующих в единицу времени) пропорциональна произведению концентраций (следовательно, и количеств) реагирующих веществ и не зависит от концентраций присутствующих веществ, не участвующих в реакции (продукты реакции и растворитель). В основе этого принципа лежит вполне вероятная гипотеза, что скорость реакции пропорциональна частоте столкновений (числу столкновений в единицу времени) между реагирующими молекулами в свою очередь частота столкновений пропорциональна произведению концентраций. Уравнения, количественно выражающие эти положения, были проверены опытным путем для очень большого числа реакций. В тех случаях, когда они не подтверждаются на опыте, можно с уверенностью утверждать, что реальный ход реакций иной, чем ход, изображенный стехиометрическим химическим уравнением. [c.163]

    Основные принципы химической кинетики [c.15]

    Применяя для всех стадий основной постулат химической кинетики и принцип стационарности к количеству активных молекул, получим  [c.53]

    Применяя к этой схеме основной постулат химической кинетики и принцип стационарности, найдем выражение для стационарной концентрации активного комплекса А  [c.55]

    Обозначив концентрацию вещества / через , применяя к элементарным стадиям основной постулат химической кинетики, используя принцип стационарности и пренебрегая в нервом [c.250]

    Основные положения формальной кинетики — принцип независимости протекания химических реакций, условие материального баланса, а также метод стационарных концентраций Боденштейна — остаются в силе и для реакций в растворах. Основной закон химической кинетики для реакций в растворах обычно записывается в той же форме, как и для реакций, протекающих в газовой фазе  [c.592]

    В начале книги кратко изложены принципы и сформулированы основные уравнения химической кинетики. Довольно подробно рассмотрен метод классических траекторий, который для химических реакций тяжелых частиц позволяет находить столь нужные для кинетических расчетов сечения и другие фундаментальные характеристики процессов, связанные с реактивными столк о1 иями. Изложение этого метода является первой попыткой в нашей литературе дать возможно полное и последовательное его описание. Трезво оценивая как важность этого метода, так и присущие ему ограничения, можно предположить, что возможности, заключенные в нем, далеко не использованы. [c.6]


    Во-первых, авторы сочли целесообразным не выделять в отдельную главу вопрос о кинетическом уравнении химического процесса. Содержавшиеся ранее в этой главе параграфы, посвященные изложению общих принципов составления и использования кинетических уравнений для одностадийных и многостадийных реакций, предпосланы в виде отдельных параграфов в главах, посвященных рассмотрению кинетики реакций простых типов и кинетики сложных реакций. Вопрос о соответствии кинетического и стехиометрического уравнения реакции вынесен в гл. 11, в которой, как и в предыдущих изданиях, излагаются основные понятия химической кинетики. [c.5]

    При рассмотрении кинетики обратимых и параллельных реакций используется основной постулат химической кинетики и принцип независимости протекающих реакций. [c.33]

    В первой части настоящей книги рассматриваются гомогенные реакции в газовой фазе изложены также общие принципы химической кинетики с ее основными закономерностями и теоретической трактовкой понятия скорости химической реакции. Вторая часть книги знакомит с реакциями в растворах. [c.6]

    Книга состоит из девяти глав. В первой главе даются основные понятия химической кинетики (скорость реакции, кинетическое уравнение и т. д.) и важнейшие ее законы — закон действующих масс и уравнение Аррениуса рассматриваются принципы методов экспериментального определения скорости химических процессов. [c.3]

    Основные положения химической кинетики хорошо известны и повторяться здесь не будут. Эти принципы, изложенные в учебниках по физической химии для реакций между малыми молекулами, без существенных изменений могут быть использованы и для макромолекулярных реакций, т. е. необходимости в формулировке каких-либо новых принципов для описания реакций макромолекул нет. И, действительно, во многих случаях отличить реакции высокомолекулярных веществ по их кинетическим характеристикам невозможно. Примером такой реакции может служить медленная димеризация сывороточного альбумина (Alb—SH) в присутствии ионов Hg "  [c.661]

    Основной итог начального периода развития биофизики — это вывод о принципиальной приложимости в области биологии основных законов физики как фундаментальной естественной науки о законах движения материи. Важное общеметодологическое научное значение для развития разных областей биологии имеют полученные в этот период экспериментальные доказательства закона сохранения энергии (первый закон термодинамики), утверждение принципов химической кинетики как основы динамического поведения биологических систем, концепции открытых систем и второго закона термодинамики в биологических системах, наконец, вывод об отсутствии каких-либо особых живых форм энергии. Все это во многом повлияло на развитие биологии, наряду с достижениями биохимии и успехами в изучении [c.8]

    В основе многих концепций катализа лежит теория переходного состояния. Поскольку даже поверхностное знакомство с этой теорией значительно упрощает понимание одних представлений и совершенно необходимо для понимания ряда других, мы рассмотрим ее основные положения и область применения. Затем мы обсудим основные принципы химического катализа и факторы, определяющие каталитическую эффективность ферментов, далее ознакомимся с наиболее развитыми областями кинетики и основами гомогенного катализа и прежде всего обсудим, какие факторы определяют реакционную способность молекул (что такое хорошая нуклеофильность и что такое хорошая уходящая группа для данной реакции) остановимся также на зависимости реакционной способности молекул от их структуры. И наконец, для удобства попутно изложим некоторые сведения из области кинетики и стереохимии. [c.46]

    Слово анализ в заглавии книги характеризует наш метод. Это значит, что мы хотим разделить рассматриваемый предмет на составные части и исследовать взаимоотношения этих частей. Вслед за анализом возникают многочисленные задачи синтеза, служащие для расчета химических реакторов. Основная же наша цель — понять структуру предмета. Поскольку мы стремимся изучить поведение химических реакторов (а они создаются для проведения химических реакций), нам следует начать с установления общих принципов описания химических реакций. Здесь, на границе нашей области, лежит соседняя область чистой химической кинетики. Предметом химической кинетики является исследование механизма химических реакций на молекулярном уровне. Для наших целей достаточно взять только результаты кинетических исследований. Наш подход к собственно химической реакции будет чисто феноменологическим. При таком подходе основная роль отводится стехиометрии и термостатике, так как все возможные изменения состояния системы обусловлены ограничениями, налагаемыми стехиометрией и термодина- [c.7]


    Рассмотрим теперь вопросы применения метода Монте-Карло к задачам химической кинетики. Система разбивается на "среду" и ансамбль "пробных частиц", причем среда описывается феноменологически через такие параметры, как концентрации отдельных компонент, температура и др. Учитывается только взаимодействие пробных частиц со средой. Если обратиться к задачам кинетики, то можно сделать вывод, что с помощью такого метода можно изучать системы, состоящие из небольшой примеси молекул интересующего нас газа к молекулам основного газа, являющегося "термостатом". Соотношение концентраций примеси и термостата должно быть таково, чтобы можно было учитывать только столкновения молекул примеси и частиц термостата. Естественно, что в ряде случаев на такие упрощения можно и нужно согласиться. Принципиальным является вопрос о построении нелинеаризованной модели. Такая возможность в принципе имеется и состоит в использовании идеи "периодических граничных условий". [c.201]

    Основными принципами (постулатами) химической кинетики являются  [c.221]

    Основной принцип нового направления масштабного перехода, сформулированный Боресковым и Слинько [37], заключается в осуществлении ряда процедур 1) в дифференциации единого сложного химико-технологического процесса на отдельные уровни и относительно самостоятельные разнородные явления, к каковым относятся все химические процессы, выраженные кинетикой химических превращений, и все физические процессы — перенос массы и теплоты, движение потоков 2) в установлении первичных закономерностей процесса путем раздельного изучения скоростей химических реакций и физических факторов 3) в установлении их взаимосвязи как элементов на каждом уровне 4) в последующем синтезе всей информации посредством общей математической модели по иерархическому принципу из моделей отдельных частей сложного процесса. [c.161]

    Если же обратиться к проблеме белка - главному предмету нашего рассмотрения, то приходится констатировать, что становление нелинейной неравновесной термодинамики прошло практически незамеченным для составляющих эту проблему задач, в том числе задачи структурной организации белковых молекул - исходной в логической цепочке, связывающей строение белка с его функцией и структурами надмолекулярных систем. Между тем предпринимаемые уже в течение трех десятилетий попытки подойти к решению вопроса, используя эмпирические подходы, равновесную термодинамику и формальную кинетику, неизменно терпят неудачу. Оставаясь нерешенной, структурная задача сдерживает рассмотрение всех последующих и создание теоретической молекулярной биологии - науки, столь же необходимой для понимания процессов жизнедеятельности, как молекулярная физика и квантовая химия для трактовки физических и химических свойств органических и неорганических низкомолекулярных соединений. А. Сент-Дьердьи писал "Мы действительно приблизимся к пониманию жизни только тогда, когда наши знания обо всех структурах и функциях на всех уровнях - от электронного до надмолекулярного - сольются в единое целое", и далее "...одним из основных принципов жизни является организация мы понимаем под этим, что при объединении двух вещей рождается нечто новое, качества которого не адекватны и не могут быть выражены через качества составляющих его компонентов" [37. С. 11-12]. [c.89]

    Общее изложение принципов релаксационной спектрометрии как структурного метода физики полимеров было дано выше. Основным допущением является разделение энергии активации в уравнении Больцмана — Аррениуса и предэкспоненциального множителя. Последний, в отличие от, скажем, химической кинетики, трактуется не как частотный фактор, а как характеристика размеров соответствующих релаксаторов. Равенство предэкспонент при неравенстве энергий активации должно было бы означать вовлечение одного и того же элемента структуры в разные процессы напрашивающийся пример изменение характера колебательных движений частиц наполнителя выше и ниже Гст или Тал полимера-матрицы. [c.297]

    Именно такой подход авторы использовали при создании этого учебника. В книге показаны основные направления современной химии и ее место в системе естественных наук, специальный раздел посвящен химии в промышленности и экологии. Теоретический и фактический материал изложен на основе общехимической логики - периодического закона, электронной теории строения вещества, общих принципов химической термодинамики и кинетики. При рассмотрении свойств элементов [c.11]

    Для изучения быстрых реакций, к которым относится реакция дегидратации метиленгликоля, обычные кинетические методы, основанные на последовательном отборе и анализе проб реакционной смеси, практически неприменимы, так как время завершения таких реакций (равновесие, полная конверсия реагента) несоизмеримо мало в сравнении со временем, требующимся для отбора и обработки даже минимального числа проб. Однако в последние десятилетия разработан целый комплекс методов исследования кинетики быстрых реакций [227]. Основным принципом большинства этих методов в применении к обратимым равновесным превращениям является изучение системы при движении последней не к состоянию равновесия, что имеет место, например, при смешении реагентов или внесении катализатора, а наоборот, при движении от состояния равновесия . Наиболее простой и наглядный прием — выведение из равновесной системы одного из продуктов путем химического связывания, отгонки и т. п. Очевидно, что если скорость вывода продукта выше скорости самого исследуемого превращения, то наблюдение (желательно, инструментальное) за каким-либо подходящим физико-химическим свойством системы может дать необходимые данные для на- [c.86]

    Необходимость резкого сокращения сроков разработки технологии новых и усовершенствования действующих химических производств, их сложность и разнообразие потребовали принципиально иного подхода к проблеме математического описания скоростей реакций и расчета кинетических констант. Это обусловлено прежде всего тем, что уравнения кинетики, содержащие информацию об основных закономерностях протекания химических превращений, являются первоосновой математической модели химического процесса и предопределяют не только выбор типа реактора, но и позволяют подойти к расчету его оптимальных технологических и конструктивных параметров с позиций общих инженерных принципов химической технологии. [c.5]

    Под неравновесными химическими реакциями обычно понимают реакции, протекающие в условиях нарушения максвелл-больцма-новского распределения энергии реагирующих молекул по степеням свободы. Тот факт, что химическая реакция, ведущая к временному изменению концентрации исходных веществ, должна приводить к нарушению равновесного распределения, был осознан еще на раннем этапе формулировки основных принципов химической кинетики [1]. Однако вопрос о том, в како11 степени это нарушение может влиять на макроскопические кинетические параметры системы, в которой протекает реакция, долгое время оставался открытым. Общие соображения о том, что неравновесные эффекты (т. е. проявление нарушения равновесного распределения) малы при условии быстрого восстановления больцманов-ского распределения (релаксация) по сравнению со скоростями реакций, нарушающих это распределение, долгое время не могли быть применены к конкретным системам, поскольку информация относите.льно макроскопических констант скоростей реакций и релаксации оставалась крайне ограниченной. Правда, на основании этих соображений можно было сделать вывод, что для реакций в конденсированных фазах неравновесные эффекты должны проявляться значительно реже, чем для реакций в газах. [c.51]

    Обратимые и параллелгзные реакции относят к сложным реакциям, состоящим из нескольких реакций. Суммарное кинетическое уравнение таких реакций обычно содержит несколько констант скоростей. 1 акое уравнение находят, пользуясь принципом независимого протекания химических реакций одним из основных постулатов химической кинетики если протекает одцопрсменпо несколько реакций, го каждая из них независима от остальных, т.е. обладает своей независимой скоростью и независнмым изменением концетраций. Конечное изменение концентрации данного вещества и скорость сложной реакции являются резул]>-татом всех этих независимых.изменений. [c.152]

    Принцип независимости химических реакций, согласно которому каждая из реакций сложного химического процесса протег кает независимо от других реакций и к ней применим основной лостулат химической кинетики. Например, для параллельной реакции [c.20]

    Применимость принципов химической кинетики к анализу метаболических процессов открывает широкие возможности математического моделирования с помо-ш ью обыкновенных дифференциальных уравнений. Па этом этапе было получено много важных результатов, в основном в области моделирования физиологобиохимических процессов, а также при моделировании динамики роста клеток и численности популяций в экологических системах. [c.10]

    В зарубежной литературе последних лет появились ряд публикаций, посвященных вопросам поиска оптимальной поровой структуры катализаторов для процессов каталитического гидрооблагораживання нефтяных остатков с применением математических методов, основанных на принципах диффузионной кинетики [60, 61, 62]. Наиболее интересные результаты получены на баае развиваемых в последнее время представлений о протекании основных реакций в режиме конфигурационной диффузии. Учитывая большое влияние на эффективность используемых катализаторов накопления в порах отложений кокса и металлов, необратимо снижающих активность катализаторов, наибольшее внимание уделяется анализу закономерностей изменения физико-химических свойств гранул катализатора в процессе длительной эксплуатации. В качестве примера рассмотрим результаты анализа влияния размера пор катализаторов на скорость деметаллизации нефтяных остатков [60]. Авторы предложили следующую зависимость для определения скорости деметаллизации с учетом физических свойств катализатора и времени его работь  [c.83]

    Обратимые и параллельные реакции. Обратимые и параллельные реакции относятся к сложным реакциям. Сложными называются реакции, состоящие из нескольких цростых. Суммарное кинетическое уравнение таких реакций обычно содержит несколько констант скоростей. Такое уравнение находят, пользуясь принципом независимого протекания химических реакций — одним из основных постулатов формальной кинетики если протекает одновременно несколько реакций, то каждая из них независима от остальных, т. е. обладает своей независимой скоростью и независимым изменением концентраций. Конечное изменение концентрации данного вещества и скорость сложной реакции являются результатом всех этих независимых изменений. [c.233]

    Совокупность всех орбиталей, отвечающих одному и тому же главному квантовому числу, называют электронным слоем. На первом электронном слое атома в соответствии с принципом Паулн и неравенствами (1.2) может находиться только два электрона в ]5-состоянни (два 15-электрона), на втором — ио два 2 >-, 2рх-, 2р г, 2рг-электрона и т. д. Если электронный слой заполнен, то электроны этого слоя не принимают участия в химических процессах. Поэтому основной интерес с точки зрения химической кинетики представляет строение незаполненного (внешнего) электронного слоя. [c.11]

    При использовании лучистого нагрева подобные осложнения не возникают. При этом можно получать самые тугоплавкие покрытия в установке, сделанной из стекла. В качестве иллюстрации на рис. 61 приведена фотография покрытия из двуокиси титана (рутила), нанесенного на плохопроводящую подложку. Отметим, что в зависимости от условий могут быть получены покрытия с различными кристаллическими свойствами. Таким образом, в настоящее время не только доказана сама возможность синтеза алмаза из газовой фазы, но и исследованы многие закономерности его роста. Выявлены основные области практического использования наращивания затравочных алмазных кристаллов. На очередь встают новые вопро- " сы и из них самый главный переход от алмазной подложки к другим, инородным, подложкам. В принципе рост алмаза из газовой фазы на неалмазных подложках возможен, задача сводится к нахождению оптимальных условий этого процесса. Теоретической основой этого направления исследовпний служит теория образования и роста новой фазы в сочетании с теориями кинетики адсорбции и химической кинетики. [c.111]

    Основные законы физико-химической кинетики реакций (в узком смысле слова), известные в принципе со времен Гульдберга, Вааге и Аррениуса, в дальнейшем были экспериментально и теоретически обстоятельно проверены и подтверждены учение же о возникновении новых фаз оставалось на чисто описательной стадии. Однако именно в этой области имеется чрезвычайно много наблюдений, накопившихся более чем за двухсотлетний период. В течение всего этого времени живой интерес к процессам фазообразования возрастал. Это понятно, так как с такого рода процессами и их последствиями приходится встречаться повсеместно, например в метеорологии, геологии, во многих областях техники, в особенности при производстве необходимых для нее материалов, и, наконец, в биологии. Лишь в самое последнее время успешный теоретический анализ явления фазообразования с единых позиций привел к включению — по крайней мере принципиальному — и этих процессов в здание кинетической теории. Целью данной книги является развитие и обоснование установленных таким образом законов. Никакого обзора огромного количества относящихся сюда экспериментальных наблюдений дано не будет. Отсутствие в прошлом единого руководящего принципа, сказывающееся еще и в наши дни, проявляется в том, что в большинстве экспериментов не обращалось внимания как раз на самые решающие обстоятельства поэтому для обоснования теоретических закономерностей могут быть привлечены лишь результаты отдельных, с особой тщательностью проведенных опытов. Однако все же представляется необходимым напомнить и о более старых экспериментах, которые привели к обоснованию широко принятых теперь понятий и установлению часто упоминаемых эмпирических правил, поскольку эти эксперименты нынешним поколением большей частью преданы забвению. Из множества прежних работ, трактовке которых в учебнике общей химии Вильгельма Оствальда уделено свыше 100 печатных страниц, почти ничего не перешло в современные справочники и учебники. Это показывает, насколько мало ценятся результаты чисто эмпирических изысканий, отсутствие которых в физической химии в целом весьма ощутимо. [c.8]


Смотреть страницы где упоминается термин Основные принципы химической кинетики: [c.21]    [c.12]    [c.13]    [c.7]    [c.107]    [c.34]    [c.799]   
Смотреть главы в:

Основы ферментативной кинетики -> Основные принципы химической кинетики




ПОИСК





Смотрите так же термины и статьи:

Кинетика химическая



© 2024 chem21.info Реклама на сайте