Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разделение энергии активации

    Это выражение получено в результате разделения энергии активации вязкого течения на энергию образования дырки и энергию перемещения кинетической единицы в эту дырку. [c.167]

    Общее изложение принципов релаксационной спектрометрии как структурного метода физики полимеров было дано выше. Основным допущением является разделение энергии активации в уравнении Больцмана — Аррениуса и предэкспоненциального множителя. Последний, в отличие от, скажем, химической кинетики, трактуется не как частотный фактор, а как характеристика размеров соответствующих релаксаторов. Равенство предэкспонент при неравенстве энергий активации должно было бы означать вовлечение одного и того же элемента структуры в разные процессы напрашивающийся пример изменение характера колебательных движений частиц наполнителя выше и ниже Гст или Тал полимера-матрицы. [c.297]


    Чтобы использовать это уравнение для оценки г, требуются точные данные по кинетике реакций в широком интервале температуры и ионной силы. Как было показано на примере 18-ти ионных реакций в воде, такие данные редко оказываются доступными [102]. Некоторые результаты приведены в табл. 7.6, из которой видно, что (с учетом ненадежности большей части исходных данных) значения критического расстояния г вполне приемлемы для объяснения значений множителя Р в пределах 10" —10 Однако в большей степени, чем эти удовлетворительные числовые оценки, интересно то, что эти данные подтверждают возможность разделения энергии активации на электростатическую и неэлектростатическую компоненты. [c.172]

    Разделение энергии активации [c.568]

    Исследуем влияние температуры на идеальный фактор разделения. Температурная зависимость проницаемости чистых компонентов, как это следует из уравнения (3.76), зависит от энтальпии растворения и энергии активации диффузии Однако избирательность сорбционного процесса а //, как показано в разд. 2.2, при изменении температуры оказывается более консервативной характеристикой, чем проницаемость А(Т). [c.107]

    Согласно более ранней, имеющей почти полуторавековую историю, гетерогенной трактовке процессов электрохимической коррозии металлов (теории локальных элементов), участки анодной и катодной реакций пространственно разделены и для протекания коррозии необходим переток электронов в металле и ионов в электролите. Такое пространственное разделение анодной и катодной реакций энергетически более выгодно, так как они локализуются на тех участках, где нх прохождение облегчено (энергия активации реакции меньше). [c.186]

    Большое различие значений энергии активации, полученных даже на одном виде углеродного материала, вызвано не только неоднородностью углеродных материалов, но и недостаточно четким учетом диффузионного влияния. Многие исследователи ввиду трудности разделения реакций 1 и 2 при реагировании углерода с кислородом пользуются суммарными константами этой реакции, определение которых также затруднено вследствие большого теплового эффекта реакции, приводящего к разогреву поверхности частиц и искажению констант. [c.146]

    В гл. I мы уже показали, что именно боковые группы обусловливают заторможенность вращения, приведя в качестве примера молекулу диметилацетилена СНз—С = С—СНз. В результате разделения из-за группы —С = С— вращение метильных групп облегчается, а энергия активационного барьера понижается до значения 2 кДж/моль. Все же и для этана энергия активации еще не столь высока, чтобы при обычных температурах не происходило практически свободного вращения. Только при очень низких температурах (порядка 50 К) вращение групп СНз заморожено . [c.131]


    При испытании на разрывной машине задается постоянная, но разная скорость деформации, а измеряется разрывное напряжение. Данные, полученные при различных скоростях и температурах для двух эластомеров, приведены на рис. 12.15. И здесь наблюдается температурная зависимость состоящая из двух линейных участков, разделенных температурой Гл (на графике ей соответствует точка перелома). Для определения энергии активации из наклона линейных участков (рис. 12.15) в соответствии с уравнением (12.10) необходимо знать показатель т, который можно найти двумя мето- [c.349]

    Плато отвечает трем атомам, разделенным достаточно большим расстоянием. Энергетически наиболее выгоден путь взаимодействия по дну одной ложбины, затем через перевальную точку, отвечающую активированному комплексу, и по дну другой ложбины. Если по этому наиболее вероятному пути реакции сделать вертикальный разрез, перпендикулярный плоскости чертежа, и развернуть его в линию на одну плоскость, то получится профиль пути реакции, характеризующий изменение ее энергии. Эта кривая отвечает изображению на рис. П.34. Ось абсцисс (координата реакции) на этом графике отражает изменения в положении ядер и распределении электронов по мере прохождения каждого акта реакции. Максимум отвечает активированному комплексу. Разность энтальпий переходного состояния и исходных реагентов — это энергия активации прямой реакции аналогичная разность для продуктов реакции — это энергия активации обратной реакции. Теоретический анализ приводит к выводу, что, строго говоря, в данном случае энергия активации (А//а) представляет собой разницу между соответствующими нулевыми энергетическими уровнями. [c.150]

    Область температур, где происходит разделение сигналов, используется для определения констант скорости инверсий. При этом применяется формула для промежуточных скоростей обмена. При —66,5° константа взаимного превращения кресло — кресло равна 60 С . Зная константы скорости инверсии для различных температур, можно найти энергию активации такого перехода в циклогексане (42,2 кДж/моль). [c.107]

    Проследим за изменением энергии при элементарном акте реакции. Начальное состояние системы атом А и молекула ВС, т. е. Гав = °о и гвс = г , где /- — равновесное расстояние между атомами в молекуле (точка а на рис. XI. 6). Конечное состояние — новая молекула АВ и атом С, т. е. Гдв = г и гвс = °° (точка б). В точке в все три атома находятся на больших расстояниях, и молекулы не существуют. Сечения по верхней горизонтальной линии и по правой вертикальной линии (рис. XI. 6) представляют кривые / и // потенциальной энергии двухатомных молекул ВС и АВ. Устойчивым состояниям молекул соответствуют точки а и б, где потенциальная энергия минимальна. Эти точки лежат в двух долинах , разделенных перевалом П, где все три атома максимально сближены (переходное состояние), образуя как бы одну молекулу. Реакция, т. е. переход из начального состояния в конечное, соответствует переходу системы из одной долины в другую через энергетический перевал, который совершается по наиболее выгодному пути, т. е. по ущелью , как показано на рис. XI.6 стрелками. Сначала система поднимается до /7, затем двигается ио седлообразному перевалу и, наконец, спускается в более низкую долину . Этот путь называется путем или координатой реакции. Изменение энергии на этом пути у е было показано на рис. XI. 2. Перевал соответствует переходному состоянию (п. с.), имеющему максимальную потенциальную энергию на наиболее выгодном пути реакции, следовательно, энергия активации имеет смысл энергии п. с. [c.242]

    Результаты исследований в масштабе лабораторной установки должны давать исчерпывающие сведения о теплотах реакций, энергиях активации, скоростях реакций, физических и химических равновесиях системы, а также о процессах тепло- и массообмена. Эти данные необходимы для проектирования удовлетворительно работающей полузаводской аппаратуры. Все эти данные должны быть получены для проектирования реактора, секции разделения и очистки и оборудования для рециркуляции потоков, без чего невозможно достигнуть приемлемых показателей процесса. Для получения всех данных, необходимых для проектирования, схема проведения работ в лабораторном масштабе должна разрабатываться с участием квалифицированного проектировщика. [c.26]

    При количественном сопоставлении уравнений (38) и (39) с опытными данными константы представляли в виде Ае. Были найдены наилучшие в смысле метода наименьших квадратов значения Л и Е для каждой константы. Разделение константы на экспоненциальные и предэкспоненциальные множители связано с некоторой неопределенностью в ограниченном температурном интервале ошибка в энергии активации может быть почти скомпенсирована ошибкой [c.22]


    Энергия активации диффузии Ев представляет собой энергию, необходимую для проведения одного моля молекул газа через элементарный процесс. Вероятно, Ев можно рассматривать ка> работу разделения цепей, в связи с чем значение Ев увеличивается с ростом размеров молекул газа . Согласно теории зон Баррера перенос молекулы газа в эластомере может иметь место, когда концентрация тепловой энергии становится достаточной для разделения локализованных цепей и [c.115]

    На молекулярно-ситовом действии цеолитов основаны важные промышленные процессы разделения углеводородов. В тех случаях, когда оба компонента бинарной смеси адсорбируются цеолитом, их можно разделить, используя различия в скоростях и энергиях активации диффузии. Однако на цеолитах со сравни тельно широкими порами (цеолит типа X и морденит) большинство молекул адсорбируется быстро. [c.656]

    Иногда из общего сдвига потенциала выделяют химическую поляризацию, которая определяется процессами, изменяющими химический состав поверхности электрода покрытие поверхности анода пленкой труднорастворимых окисей, образование сплавов и интерметаллических соединений на катоде и т. п. Если концентрационную поляризацию легко определить, сравнивая, например, величины сдвига потенциала при различной скорости перемешивания электролита, то разделение электрохимической и химической поляризации часто невозможно, так как одно и то же явление может быть причиной возникновения или увеличения поляризации обоих видов. Так, образование пленок окислов приводит как к закрытию части поверхности электрода, так и к повышению энергии активации отдельных стадий процесса. [c.265]

    Взрывная катионная полимеризация, по мнению некоторых исследователей, может протекать за счет свободных ионов, когда отпадают энергетические затраты ня разделение ионных пар и резко снижается энергия активации роста цепи. [c.157]

    Ионы с неполярными группами вызывают увеличение тг и рост энергии активации вращательного движения, что согласуется с айсбер-говой и клатратно-гидратной моделями индуцированных этими ионами структур. Согласно этому критерию и понижению трансляционной подвижности (положительный В, отрицательный гидрофобные структуры. Кэй и соавт. [487] предположили, что положительные производные dE/ dT для Me4N+ и возрастающие отрицательные значения для более высоких гомологов этого ряда R4N+ указывают на то, что Me4N+ не гидратируется по гидрофобному типу, а характеризуется слабой положительной гидратацией (разд. З.Б). Качественное разделение энергии активации самодиффузии на вклады от полярной и неполярной групп указывает на то, что группа — СО " гидратируется положительно, а - SO" - отрицательно [808]. В нормальных сульфокислотах R-SO" уменьшение воды пропорционально длине цепи [163]. Если считать, что эффект определяется слоем воды толщиной в одну молекулу вокруг органического иона, то наблюдаемое увеличение тг соответствует его удвоению в этом слое по сравнению чистой водой [26]. Поскольку коэффициент диффузии воды вблизи поверхности иона R4N+ всегда больше, чем коэффициент диффузии самого иона, следует сделать вывод, что гидрофобно-гидрат-ная структура не может быть жесткой и долгоживущей [431]. Времена магнитной релаксации 1Н для СН-протонов в R-SOJ показывают, что движения углеводородной цепи очень близки в воде и в неструктурированных растворителях. Следовательно, движение органических цепей в результате гидрофобной гидратации ограничено несущественно [163]. [c.290]

    Уравнения (1.17) отражают тот факт, что скорость электродной реакции определяется двумя факторами химическим и электрическим. Экспоненциальная зависимость скорости электродной реакции от потенциала и ее роль в селективности оксредметрических измерений обсуждалась в связи с рис. 1.8—1.11 и уравнениями (1.48) и (1.52). Для медленно протекающих электродных процессов можно более, чем на десять порядков, изменять скорость реакций за счет увеличения или уменьшения скачка потенциала на границе электрод — раствор. Вместе с тем разделение энергии активации электрохимической реакции на два слагаемых в известной мере условно и в связи с этой условностью [c.60]

    Обычное разделение энергии активации на две части, одна из которых есть Уг энергии активации образования пары вакансий, и другая — энергия активации процесса перескока, видимо, не вполне состоятельно, так как в этом случае мы должны допустить равенство энергий активации процоссов перескока во всех рассмотренных случаях. Мы полагаем, что возможно говорить о некоторой общей энергии активации процесса разрыхления решетки. Если это действительно так, то решение задач, стоящих перед диффузионным анализом, может быть в ряде случаев выполнено при помощи в какой-то мере произвольно выбранного радиоактивного индикатора. [c.322]

    Особенно интересным в этих результатах является следующее. Предэкспоненциальный множитель бимолекулярной реакции 1, по-видимому, в 20 раз больше, чем частота столкновений реакция 2 имеет отрицательную энергию активации энергия активации реакции 1 меньше, чем энергия связи в озоне. Интересно далее отметить, что, хотя реакция 3 экзотермична (около i)3 ккал), тем не менее ее энергия активации равна 6 ккал. Кроме того, молекулы Ог, образованные по реакции 3, имеют избыток энергии в 99 ккал, разделенный между ними, и можно ожидать, что ввиду низкой энергии связи О3 <(24,6 ккпл) энергетическая цепь может поддерживаться этими горячими молекулами О2. [c.349]

    Конформационный анализ посвящен рассмсп рению тех бесчисленных молекулярных структур, которые возникают и результате вращения в молекуле групп атомов вокруг ординарных связей эти структуры называются конформациями. Каждая конформация характеризуется определенным пространственным расположением атомов н, в связи с этим, определенным содержанием энергии. При вращении группы атомов вокруг ординарной связи потенциальная энергия молекулы претерпевает изменение, которое может быть описано синусоидальной кривой. Те конформации, которым на этой кривой соответствуют минимумы, способны реально существовать и называются поворотными изомерами или у с т о н ч и з ы ми к о н ф о р м а-циями . Остальные конформации представляют такие энергетические состояния, которые молекула должна пройти для превращения одной устойчивой конформации в другую. Относительно низкие значения энергии активации взаимного превращения устойчивых конформаций, как правило, являются причиной невозможности разделения поворотных изомеров при обычных температурах (исключением являются некоторые производные дифенила и аналогичные нм соединения, рассмотренные на стр. 490). Так как разные поворотные изомеры обычно энергетически неравноценны, то большинство молекул каждого соединения существует преимущественно в одной или лишь в очень немногих устойчивых конформациях. Однако под действием специфических сил в условиях химической реакции соединение может также временно принять какую-либо из энергетически менее выгодных конформаций. [c.800]

    АВ, от которой удален атом с, т. е. Гав — го, Гвс = °° (точка б). Точка в соотвегствует энергии системы, когда три атома отделены друг от друга большими расстояниями, т. е. Гав и Гвс очень велики. Сечения по горизонтальной линии аб и вертикальной вб (см. рис. XVI. ) представляют собой кривые потенциальных энергий двухатомных молекул вс и ав соответственно (кривые / и // на рис. XVI.8). Устойчивым состоянием этнх молекул (точки а и б) отвечают минимумы потенциальной энергии. Из рис. XVI.8 видно, что конечное и начальное состояния лежат в двух долинах , разделенных перевалом П. Здесь все три атома максимально сближены и образуют как бы одну молекулу. Реакция, т. е. движение системы, состоящей из трех атомов, из начального состояния в конечное соответствует переходу через этот перевал. Такой переход проходит по наиболее выгодному пути, т.е. с наименьшей затратой энергии (наименьшей энергией активации). Он состоит в подъеме по ущелью , движении Ччзрез седлообразный перевал П и спуске также по ушелью в другую долину . Этот путь, показанный на рис. XVI. стрелками, называется путем или координатой, реакции. Линии равной энергии на рис. XVI. справа и слева от пути реакции лежат на откосах ущелий . Чем дальше они от этого пути, тем выше их положение на откосах ущелья. [c.438]

    Показано, что в ЩГК подавляющее большинство носителей заряда термализуются в генетических парах (>90%). Для кристалла КС1 определена энергия активации разделения генетических пар = 0,06 эВ при j < 300 А/см , которая снижается при увеличении плотности возбуждения, а также температтоная зависимость эффективного сечения e-Vt рекомбинации 5= 5,77-10 см . Для кристаллов sl и sBr определены энергии активации разделения генетических пар = 0,07 зВ и = 0,1 эВ соответственно, и температурные зависимости эффективных сечений e-Vt рекомбинаций S= 1,М0 Г см и S = 4,37-10 Г см соответственно. Для кристалла sl-Tl определено эффективное сечение захвата электрона на TI -центр при300К5=7-10- Чм . [c.77]

    Экспериментально показано [12], что нри разделении смесей смазочных масел наиболее высокоиндексный компонент концентрируется в верху противоточной колонны. Для трех исследовавшихся материалов никаких исключений из этого правила не наблюдалось. Исследования жидкого состояния, проводившиеся с применением метода термической диффузии [9, 10, 32], дают достаточно убедительные основания для того, чтобы принять в качестве критерия легкости разделения величину А Е JV , т. е. частное от деления энергии активации для вязкой текучести на молекулярный объем. Это подтверждается многочисленными примерами и но существу позволяет предполагать, что определяющим фактором при термодиффузионном разделении является температурный коэффициент вязкости. Эта теория, очевидно, наиболее широко применима в первую очередь к углеводородньш смесям. [c.30]

    Сегодня квантовая химия позволяет с высокой точностью вычислять равновесные межъядерные расстояния и валентные углы, барьеры внутреннего вращения, энергии образования и энергии диссоциации, частоты и вероятности переходов под влиянием электромагнитного излучения в весьма широком диапазоне длин волн (от рентгеноэлектронных спектров до спектров ЯМР), энергии активации, сечения и константы скорости простейших химических реакций. В ходе квантовохимических расчетов для многих молекул было обнаружено, с одной стороны, существование значительного числа минимумов на потенциальных поверхностях, разделенных часто невысокими барьерами (нежесткие молекулы), была установлена высокая чувствительность электронного распределения к изменениям ядерной конфигурации, а с другой стороны, были подтверждены и постулируемые классической теорией возможности переноса локальных характеристик отдельных фрагментов молекул в рядах родственных соединений и т.п. Квантовая химия значительно облегчает интерпретацию различных экспериментальных спектров. [c.5]

    Р-ции, протекаюпше в жидкой фазе, чрезвычайно разнообразны как по строению реагентов, так и по механизмам превращения (с.м. Реакции в жидкостях). При диссоциации молекулы на свобод, радикалы и атомы наблюдается клетки эффект. Медленная (в сравнении с газом) диффузия частиц в жидкости щзиводит к тому, что безактивационные бимолекулярные р-ции протекают как диффузионно-контролируемые реакгрш. Р-ции, имеющие значит, энергию активации, протекают, как правило, в кинетич. режиме. Реагенты в р>-ре часто образуют между собой мол. комплексы и разнообразные ассоциаты. Это отражается на кинетике р-ции и часто существенно меняет кинетич. закономерности процесса. Полярный р-ритель облегчает ионизацию молекулы, в р-ре появляются контактные и разделенные ионные пары. Возникает вероятность параллельного протекания р>-ции по разным механизмам. Нередко, однако, р-ния прютекает по мол. механизму как самосогласованный процесс перестройки мол. орбиталей реагирующих частиц (см. Вудворда Хофмана правила). Окислит.-восстановит. р>-ции могут происходить в жидкости по механизму квантового туннелирования (см. Туннельный эффект). [c.382]

    К числу проблем Я. х. относится исследование химии горячих атомов, возникающих при разл. ядерных превращениях. Горячие атомы в результате радиоактивного распада имеют избыточную (по сравнению с обычными атомами среды) кинетич. энергию, формально соответствующую т-рач 10 -10 К и превышающую энергию активации многих хим. р-ций. При столкновениях с атомами и молекулами среды горячие атомы способны стабилизироваться в соединениях, отличных от исходных (эффект Сциларда - Ч шмерса 1934). Этот эффект и используют в Я. х. для исследования механизма р-ций горячих атомов со средой, синтеза. мечеиыд соединений, разделения изотопов и др. [c.512]

    Итак, к концу 1940-х гг. гипотеза о радикально-цепном механизме расширяется до теории параллельно-последовательных реакций деструкции и уплотнения на основе радикально-цепного механизма. К примеру, А.Ф. Красюков в своей книге, являющейся первой книгой выпущенной в печати на тематику замедленного коксования, представляет процесс коксования как сумму параллельно-последовательных реакций, протекающих по радикальному механизму [11, 29, 55, 63, 69, 78]. Эта попытка объяснить механизм термического преобразования нефтяных остатков является довольно серьезной и масштабной (теория не теряла своей актуальности около 20 лет). Параллельнопоследовательные реакции деструкции и уплотнения долгое время были приняты за основу механизма коксообразования. Помимо А.Ф. Красюкова эту идею поддержали многие исследователи того времени и использовали ее в своих разработках по изучению процесса коксования. Обобщенная теория параллельно-последовательных реакций применительно к разложению газообразных, жидких и твердых топлив изложена в работе [90] и выглядит следующим образом. В результате термического воздействия на нефтяные остатки происходят деструктивные изменения их компонентов, сопровождающиеся распадом исходных молекул и образованием новых. Сущность теории заключается в том, что при термическом разложении топлива протекает одновременно несколько реакций с различными энергиями активации 76]. Следует отметить, что в практике изучения строения высокомолекулярных органических соединений нефти принят метод разделения их на ряд структурных групп (масла, смолы, асфальтены, карбоиды и др.) и последующего изучения их химического состава [24, 99]. [42] Среди всех групп наибольший интерес при исследовании процесса коксования представляют смолы и асфальтены, которые являются высокомолекулярными гетероциклическими соединениями нефти, и которые считаются коксообразующими веществами. [c.62]

    Та же релаксационная техника (температурный скачок) применялась к изучению денатурации ДНК в работе [126]. Это исследование показало наличие трех последовательных процессов. При малом температурном скачке (от 6 до 18 °С) сначала возникает мгновенный ответ (т С 20 мсек), состоящий в быстрой структурной дезорганизации спирали без разделения цепей. Дезорганизация должна начинаться в участках с избытком пар А — Т. За мгновенным ответом следует постепенная деспирализация, которую авторы назвали быстрым эффектом. Длительность этого процесса пропорциональна Далее малые температурные возмущения в области перехода проявляются в весьма медленном кинетическом эффекте, характеризующемся большой энергией активации (- 100 ккал/моль) и практически не зависящем от молекулярного веса. Он может быть истолкован как явление нуклеации в кооперативном переходе, т. е. как уничтожение спиральных участков, разделяющих неупорядоченные. [c.523]


Смотреть страницы где упоминается термин Разделение энергии активации: [c.425]    [c.111]    [c.163]    [c.219]    [c.354]    [c.354]    [c.20]    [c.336]    [c.354]    [c.211]    [c.454]    [c.385]    [c.106]    [c.61]    [c.61]    [c.454]    [c.550]   
Смотреть главы в:

Правила симметрии в химических реакциях -> Разделение энергии активации




ПОИСК





Смотрите так же термины и статьи:

Энергия активации



© 2025 chem21.info Реклама на сайте