Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Массопередача при турбулентном движении

    Фармер [30] скоррелировал коэффициенты массопередачи для капли в области турбулентного движения при помощи зависимости, подобной уравнению (1-95). Для Ее<300 скорость экстрагирования соответствует молекулярной диффузии из неподвижной капли. Путем введения соответствующей поправки учтена ассоциация растворенного вещества в случае неполярных растворителей с таким расчетом, чтобы получить согласованность результатов для полярных растворителей. [c.87]


    Таким образом, в настоящее время не существует теоретических моделей массопередачи, основывающихся на точных, надежно проверенных опытом гидродинамических закономерностях. Основной причиной этого следует считать сложность и недостаточную изученность турбулентного движения. [c.398]

    Однако в обычных колонках со смоченной поверхностью ламинарный поток пара уменьшает скорость обмена между паром и жидкостью это вызывает необходимость очень малой скорости пара для того, чтобы обеспечить хорошую ректификацию. В насадочных колонках происходят частые разрывы потока пара и возникают более турбулентные движения. Турбулизация потока увеличивает коэффициент массопередачи и соответственно позволяет пользоваться значительно большей скоростью пара. [c.172]

    Имеющиеся данные по характеристике колонок с вращающейся лентой (табл. 24) показывают, что эта конструкция сохраняет все характерные свойства колонок из пустой трубки, малую величину задержки и перепада давления, но сравнительная эффективность и пропускная способность колонок с вращающейся лентой примерно в пять раз больше, чем колонок из пустой трубки того же диаметра. Повышенная эффективность колонок с вращающейся лентой по сравнению с колонками из пустой трубки вызывается большим коэффициентом массопередачи пара, что является результатом турбулентного движения, создаваемого вращающейся лентой (см. гл. I, раздел IV, 5). [c.197]

    Как показал В. В. Кафаров [52], при взаимодействии фаз в результате их относительного движения пограничные слои постоянно обновляются за счет турбулентного движения в каждой из фаз. При этом происходит изменение формы и размеров поверхности контакта фаз. Соотношение между молекулярным и конвективным переносом массы определяется гидродинамикой потоков фаз. Поскольку большинство реальных аппаратов работает в области турбулентного движения фаз и характеризуется интенсивным вихреобразованием на границе их раздела, массопередача осуществляется главным образом за счет конвективного переноса и является функцией гидродинамической обстановки в зоне межфазного контакта. [c.108]

    Процесс массопередачи теснейшим образом связан со структурой турбулентного потока в каждой фазе. Как известно из гидродинамики (см. стр. 47), при турбулентном движении потока у твердой стенки образуется пограничный слой. Аналогично в каждой фазе различают ядро, или основную массу фазы, и пограничный слой у границы фазы. В я д р е вещество переносится преимущественно турбулентными пульсациями и концентрация распределяемого вещества, как показано на рис. Х-5, в ядре практически постоянна. В пограничном слое происходит постепенное затухание турбулентности. Это выражается все более резким изменением концентрации по мере приближения к поверхности раздела. Непосредственно у поверхности перенос сильно замедляется, так как его скорость уже определяется скоростью молекулярной диффузии. В этой области наблюдается наиболее резкое, близкое к линейному, изменение концентрации вплоть до границы раздела фаз (см. рис. Х-5). [c.395]


    Наиболее ранней попыткой описать механизм массопередачи была пленочная теория Льюиса и Уитмена, введших понятие двойной пленки на границе раздела фаз — фазовой и жидкой. При этом полагается, что обе пленки находятся в ламинарном движении, тогда как вся остальная жидкость и весь объем газа находятся в турбулентном движении и что в них, следовательно, устанавливается равномерная концентрация по всему объему. Процесс массопередачи протекает только за счет молекулярной диффузии и сравнительно медленно, в связи с чем пренебрегают зависимостью коэффициента диффузии от концентрации диффундирующего элемента, т. е. коэффициент D в выражении (III. 1) полагают величиной, постоянной для данной двухфазной системы. [c.67]

    Если жидкая система движется ламинарно, то можно путем простого геометрического анализа получить теоретическое решение проблемы массопередачи -2 2 . В случае турбулентного движения проблема усложняется и не может быть решена теоретически. Полутеоретические решения были, однако, получены путем развития в различных направлениях аналогии Рейнольдса. Эти решения основываются [c.71]

    Хигби полагал, что в жидкости, находящейся в турбулентном движении, жидкостная пленка на границе раздела фаз постоянно обновляется жидкостью из более глубоких слоев. При этом массопередача осуществляется посредством нестационарной молекулярной диффузии через тонкую жидкостную пленку, так как из-за кратковременности контакта фаз в пленке не успевает установиться стационарный режим. Хигби считал, что концентрация диффундирующего компонента на границе раздела фаз зависит от времени их контакта, в связи с чем начальным этапом массопередачи должно быть проникание (пенетрация, "проницание") через жидкостную пленку. Период проникания ("время экспозиции" по терминологии Хигби), отвечающий времени установления равновесия на границе раздела фаз, при рассмотрении массопереноса из цилиндрического и сферического газового пузырьков соответственно составляет  [c.16]

    Процесс массопередачи между твердой и жидкой фазами при перемешивании можно представить следующим образом-. Молекулы растворяются с поверхности твердой массы. Так как непосредственно на границе фаз в жидкости нет турбулентного движения, то растворяющиеся молекулы твердого вещества проникают в окружающую жидкость за счет молекулярной диффузии в на-правлении, нормальном к границе раздела фаз. Как только диффундирующие молекулы твердого вещества попадают на такое расстояние от границы раздела фаз, где уже проявляется турбулентное движение, начинает действовать турбулентная диффузия. Из этих двух стадий процесса массопередачи значительно более медленной будет передача массы молекулярной диффузией у поверхности твердого вещества, где отсутствует турбулентность. Представим далее, что на границе раздела фаз между твердым веществом и жидкостью существует пленка жидкости, в которой отсутствует течение, так что в ней сосредоточено сопротивление граничной поверхности, проявляющееся в резком изменении концентрации. В отличие от теплопроводности, этот слой называют диффузионным слоем (в немецкой литературе применяется термин диффузионная пленка Нернста ). [c.184]

    В работах М. Е. Позина [137] метод непосредственного интегрирования применен также для случая относительного движения (противоток или прямоток) обеих фаз (в этом случае равновесная концентрация Ср изменяется вдоль поверхности соприкосновения) и определены частные коэффициенты массопередачи как для жидкостной, так и для газовой пленки при различных законах распределения скоростей. Выведенные уравнения близки к получаемым на основании теории подобия установлено, что при прямотоке значения Лй (а следовательно, и частного коэффициента массопередачи) для газовой пленки выше, чем в случае противотока, причем разница между ними увеличивается с уменьшением скорости газа и увеличением скорости жидкости. Для жидкостной пленки при больших з критерий Ми мало зависит от направления взаимного движения газа и жидкости. При противотоке обнаружена также зависимость Ыи от отношения между начальным и конечным парциальным давлением газа (с увеличением этого отношения Ми уменьшается). Уравнения для ламинарного и турбулентного движения показали отсутствие резкого перелома значе- [c.58]

    Большое практическое значение имеют коэффициенты массопередачи для барботирующего потока пузырьков газа через жидкость. Этот вопрос был исследован Шульманом [26] в области высоких скоро- тей газового потока, где диаметр пузырьков уже не зависит от размеров отверстий в барботере или пористости плитки, распределяющей газ (гл. II). Для каждого из двух видов потока (ламинарного и турбулентного) действительны разные зависимости массопередачи. В ламинарной области скорость массопередачи зависит от объемной скорости газа, поступающего в барботер, в случае же турбулентного движения она от этой скорости не зависит. [c.575]


    Уравнения для теплоотдачи легко обобщить на случай массопередачи это сделано в гл. 35, посвященной массопередаче при турбулентном движении. [c.332]

    В этой главе мы рассмотрим массопередачу в турбулентном потоке примерно тем же методом, каким мы пользовались при рассмотрении теплообмена в турбулентном потоке (гл. 25). Целесообразно рассмотреть массопередачу в турбулентном пограничном слое у плоской пластины ввиду небольшого, но все возрастаюш его числа непосредственных применений этой теории. Более важная причина состоит в том, что это изучение приводит к пониманию массопередачи при движении над поверхностями более сложной геометрической формы. Мы рассмотрим также классические аналогии переноса тепла, массы и количества движения между жидкостью и внутренней стенкой трубы. Наконец, мы проанализируем теорию проницания, базирующуюся на некоторой модели процесса. Замечательная особенность этой теории заключается в том, что она описывает массопередачу (и теплопередачу) между двумя жидкими фазами. Это отличает ее от большей части теорий переноса, которые в большей или меньшей степени ограничены применимостью к обмену между жидкостью и твердой фазой. [c.498]

    Это выражение было установлено для турбулентного движения в пограничном слое без массопередачи, так что применение его в этом выводе, вероятно, ограничено системами с низкими концентрациями диффундирующего компонента. [c.499]

    Хигби предположил, что основной механизм массопередачи включает движение турбулентных вихрей из ядра потока к границе раздела, сопровождающееся кратковременными периодами нестационарной молекулярной диффузии от границы раздела в жидкость, прежде чем ее сменят на поверхности последующие вихри. Средняя скорость массопередачи, согласно этой модели, зависит от времени существования вихря на поверхности и полного количества диффундирующего компонента, которое передается от границы в вихрь за это время, [c.508]

    Постоянные величины А, т, п, д в уравнениях (1-90) и (1-91) можно определить путем измерения перепадов давлений в одно-и двухфазных потоках. Измерения эти легко выполнимы. Значение коэффициента динамических изменений следует из того, что он может считаться также мерой увеличения массопередачи, вызванной турбулентностью [51]. Следовательно, если известна массопередача в условиях, когда движение фаз имеет на нее слабое влияние. [c.77]

    Предполагаем, что частицы жидкости и газа являются несжимаемыми, массопередача из фазы в фазу отсутствует. Для описания такого движения жидкости и газа применим общие дифференциальные уравнения турбулентных двухфазных потоков [33, 34]. [c.154]

    Развитие вихревого движения приводит к интенсивному поперечному переносу, к развитию турбулентности и, следовательно, интенсивному перемешиванию в потоке. В то же время для осуществления процессов массопередачи необходимо наличие градиента концентраций вдоль потока от входа до выхода нз аппарата, которые должны непрерывно изменяться. Интенсивное перемешивание в турбулентном потоке вызовет и продольное перемешивание, что снизит продольный градиент концентраций и ухудшит разделение. Чем больше будет коэффициент вихревой диффузии тем больше будет влиять эффект перемешивания. В этом смысле коэффициент служит характеристикой интенсивности перемешивания в диффузионных процессах. [c.197]

    Поскольку критерий Прандтля характеризует относительное соотношение профилей скоростей и концентраций, то следует ожидать, что влияние этого соотношения на процесс массопередачи должно меняться в зависимости от гидродинамической обстановки процесса, т. е. должен меняться показатель степени при числе Прандтля. При наиболее равномерном распределении жидкости и газа в двухфазном потоке в условиях развитой свободной турбулентности в соответствии со структурой уравнений (П1, 227) и (П1, 228) показатель степени п должен достигать максимального значения, равного единице. При уменьшении турбулизации потоков показатель степени п при числе Прандтля должен уменьшаться, становясь в пределе, когда движение прекратится, равным нулю. В последнем случае понятие о соотношении профилей скоростей и концентраций теряет свой смысл. [c.246]

    Коэффициенты турбулентной диффузии О и ж) можно ориентировочно оценить совместным решением второго закона Фика с гидродинамическими уравнениями движения вязкой жидкости и неразрывности потока [15]. Практически же >э = -От + определяют опытным путем, как и коэффициент массопередачи К, Кг з или Ку1,. [c.130]

    Для улучшения условий турбулентности и движения массы применяются аппараты с движущимися частями. Это может быть, например, цилиндр, вращающийся внутри колонны (рис. УП-28). Жидкость в этом случае стекает по обеим сторонам стенки тонкими слоями ( 1 мм). Большое число оборотов улучшает массопередачу. С увеличением числа оборотов растет число теоретических тарелок, соответствующее данной высоте колонны (при постоянной производительности 5). Влияние числа оборотов на число теоретических тарелок велико. Для такой колонны характерно также небольшое падение давления пара, что позволяет применять ее для дистилляции под вакуумом. [c.589]

    С аналогичными трудностями приходится сталкиваться при теоретических исследованиях процессов тепло- и массообмена в турбулентных потоках, а также процессов, протекающих в реакционных аппаратах, в которых химические превращения осложнены движением потоков и тепло- и массопередачей. Более того, для очень сложных процессов даже нельзя составить систему дифференциальных уравнений, исчерпывающе описывающих данный процесс. [c.65]

    Примерами могут служить технологические процессы в гидрометаллургии (извлечение золота из руды в цианистый раствор, растворение серной кислотой алюминия, содержащегося в бокситах, и др.), в сахарном производстве, в процессах гидрирования жиров и т.д. Основной задачей расчета таких процессов является оценка скорости массопередачи к поверхности мелких частиц, обтекаемых жидкостью, движение которой определяется случайными пульсациями и характеризуется статистическими параметрами турбулентного потока. [c.104]

    На рис. 10.9 изображено изменение концентрации вещества С в одной из фаз (явления в другой фазе пока не рассматриваются взаимодействие фаз — предмет массопередачи). Примыкающая к границе (7) фазового раздела область, в которой наблюдается изменение С нормально к границе, называется диффузионным пограничным слоем. Изменение концентрации от значения на границе до С в ядре фазы происходит плавно. Для удобства анализа и расчета вводят понятие о модельной пограничной пленке с четкими границами и определенной толщиной 5д считают, что в этой пленке сосредоточено все изменение концентрации от С до С, а за пределами пленки (в ядре) концентрация постоянна. Диффузионная пограничная пленка аналогична тепловой (ее толщина т) и ламинарному пристеночному слою (5и) во всех этих пленках невелика роль турбулентного переноса (количества движения, теплоты, вещества), доминирует вклад молекулярного переноса — вязкость, кондукция, а в изучаемых здесь явлениях — диффузия. В общем случае толщина диффузионной пленки 5д не совпадает с и и 8р количественная оценка связи между ними дана в разд. [c.774]

    Описанная недавно колонка с вращающейся концентрической трубой [7J сочетает в себе малую величину задержки, небольшой перепад давления и высокую эффективность колонок пленочного типа с высокой пропускной способностью тарельчатых или насадочных колонок. Взаимодействие пара и жидкости в колонках этого типа происходит в кольцевом пространстве, образованном неподвижной наружной трубкой и вращающейся внутренней трубкой, расположенной концентрически. При соответствующей скорости вращения паровая фаза приходит в турбулентное движение, что увеличивает козффи-циент массопередачи, и в согласии с теорией позволяет увеличить скорость пара, не уменьшая эффективности. [c.200]

    Теория проницания (пенетрации) Р. Хпгби [16, 17] считает процесс диффузии неустановившимся, причем скорость диффузии принимается такой же, что и при диффузии в неподвижный слой, бесконечной глубины. Согласно этой модели, коэффициент массоотдачи оказывается пропорциональным коэффициенту молекулярной диффузии в степени 0,5, что иногда лучше согласуется с опытными данными. А. М. Розен и В. С. Крылов [13] указывают, что теория Хигби заведомо неприемлема для системы с турбулентным движением, так как она не учитывает гидродинамики, а в действительности турбулентные пульсации оказывают весьма сильное влияние на скорость массопередачи. [c.96]

    Для процессов абсорбции, контролируемых сопротивлением газовой фазы, не усложненных сильными тепловыми эффектами, характерными для систем НС1 — вода, коэффициенты массопередачи могут быть рассчитаны по уравнению Гиллиленда (см. уравнение 1-98, т. II) для случая турбулентного движения потока (без учета входного эффекта). [c.427]

    Как было показано выше, диффузионная модель Ньюмена — Гробера представляет собой предельный случай, ограничивающий минимальную скорость массопередачи. Естественно предположить, что другим крайним случаем явится модель, учитывающая макроскопический перенос между линиями тока в результате возникновения внутри капли турбулентного движения. Подобная модель была разработана Хандлосом и Бароном [51]. [c.94]

    Подводя итог различным работам по теориям массообмена, можно сделать вывод, что двухпленочная теория, сформулированная Льюисом и Уитманом в 1924 г., не отражает истинного механизма процессов массопередачи. В деле создания более точной и универсальной теории сделаны лишь первые шаги. Это вызвано трудностью получения прямых экспериментальных доказательств, а также неразработангю-стью гидродинамических проблем, в частности закономерностей турбулентного движения. Будущая, наиболее полная и обобщенная, теория массообмена должна учитывать 1) диффузионное сопротивление каждой из фаз 2) влияние как молекулярной, так и турбулентной диффузии 3) явления, происходящие на поверхности раздела фаз 4) физикохимические свойства системы. Значение последнего фактора можно проиллюстрировать на примере жидкостной экстракции особенности систем жидкость—жидкость (возникновение стабильных эмульсий) часто не позволяют осуществлять предельную турбулизацию потоков и вынуждают работать при скоростях, составляющих 40—60 о скорости при за-хлебывании  [c.132]

    Относительно большая скорость массопередачи в период образования капли объясняется явлениями, приводящими к усилению турбулентности при движении внутрь капли. При наблюдении капел ь,. подвешенных в жидкости в присутствии растворенного вещее а, замечено [35, 65], что на поверхности капли образуются склаД,ки, появляются деформации и колебания, начинается завихрение жидкости внутрь. Эти явления особенно интересны в начальной ф>азе образования капли и связаны с неравномерным распределен амем концентраций растворенного вещества и вместе с ним межфазного натяжения. Самая высокая концентрация наблюдается всегда, у отверстия капилляра. Колебания и деформации происходят в мо ент массопередачи. Интенсивность явлений увеличивается при повышении концентрации кроме того, развитие этих явлений зависи Е - от скорости образования капли и природы веществ. Введение дев 1>х-, ностно-активных веществ подавляет эти явления. , [c.85]

    Поэтому развитие турбулентности не всегда может вестн к необходимому повышению эффективности массопередачи. Соответствеино необходимо так организовать процесс массопередачи в аппаратах, чтобы при развитии турбулентности эффект продольного перемешивания был сведен к минимуму. На практике это достигается использованием мелкой насадки, созданием однонаправленного движения потоков газа и жидкости в тарельчатых колоннах специальных конструкций и, наконец, созданием аппаратов типа струйных колонн и т. п. [c.197]

    Из данных табл. 19 видно, что максимальное число теоретических ступеней разделения (3,54 на 1 см) не соответствует максимальному фактору интенсивности, равному 381 при числе теоретических ступеней 2,12 на 1 см и при скорости паров 0,4575 см/с. Далее можно видеть, что после максимального значения 381 фактор интенсивности снова уменьшается, но намного медленнее, чем следовало бы ожидать в связи с сильно уменьшившимся числом теоретических ступеней разделения. Таким образом, для получения высоких значений фактора интенсивности не имеет смысла работать при низких скоростях паров. При повышенных нагрузках движение паров становится турбулентным, что оказывает благоприятное действие на массопередачу аналогично увеличению коэффициента диффузии. С возрастанием нагрузки колонны выше оптимального значения количество орошаюш,ей жидкости увеличивается, и под действием поднимающихся паров происходит подвисание жидкости в колонне. Удерживающая способность возрастает в степени, превышающей 2, вследствие чего фактор интенсивности снижается. [c.128]

    Ламинарный или пленочный режим в трубчатых аппаратах существует только при малых скоростях и характеризуется спокойным стеканием жидкости по стенкам трубы. При увеличении скорости пара поток его воздействует на жидкую пленку, затормаживая ее движение. При этом на границе пара и жидкости образуются паровые вихри. Механизм процесса массопередачи при этом изменяется, и начинает преобладать турбулентная диффузия. При дальнейшем увеличении скоростн возникает режим, который по аналогии с насадочными колоннами получил наименование эмульгационного [97). [c.49]

    Скорость гетерогенных процессов характеризуется фактическим выходом продукта или коэффициентом скорости процесса в кинетическом уравнении. Фактический выход продукта зависит от множества факторов, как химических, влияющих на скорость реакций, так и физических и гидродинамических, влияющих на скорость массопередачи. Химическими факторами являются константы скоростей реакций. К физическим и гидродинамическим относятся величина хмежфазной поверхности, коэффициент диффузии и другие физические свойства реагентов и продуктов реакции, геометрические параметры аппаратов, факторы, влияющие на турбулентность системы. Вид общего кинетического уравнения зависит от того, в какой области — кинетической, диффузионной или переходной — идет процесс, т. е. соотношения констант скоростей его диффузионных и химических стадий, а также от режима движения фаз. [c.152]

    Поверхиостиое иатяжеиие не влияет на коэффициент массоотдачи Рж в условиях ламинарного течения жидкости. При турбулентном течении р обратно пропорционален поверхностному натяжению в степени около Vз [21]. 11ри добавлении поверхностноактивных веществ могут наблюдаться локальные изменения поверхностного натяжения и, как следствие, поверхностная конвекция и увеличение скорости массопередачи. Изменение величины а в направлении движения жидкости также способствует образованию конвективных токов вблизи поверхности [22]. В ряде случаев, наоборот, при добавлении ПАВ изменяется структура поверхностного слоя таким образом, что коэффициент массоотдачи р уменьшается. [c.55]

    Основные исследования коэффициентов массопередачи в системе жидкость—жидкость многими учеными сначала проводились в так называемых диффузионных ячейках [12, 27, 77], где точно определена межфазная поверхность процесса и относительная скорость движения обеих фаз. На рпс. 1-13 представлен такой аппарат Левп [42]. Поверхность раздела фаз имеет форму кольца и расположена между перегородками 9 и 10. У каждой мешалки свой привод, поэтому можно регулировать турбулентность в обеих фазах. Массообмен может осуществляться в неустановившемся, периодическом процессе или, в случае течения двух фаз, в непрерывном процессе. [c.326]


Смотреть страницы где упоминается термин Массопередача при турбулентном движении: [c.212]    [c.172]    [c.184]    [c.86]    [c.98]    [c.262]    [c.742]   
Смотреть главы в:

Гидродинамика, теплообмен и массообмен -> Массопередача при турбулентном движении




ПОИСК





Смотрите так же термины и статьи:

Массопередача

Массопередача массопередачи



© 2025 chem21.info Реклама на сайте