Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Олова перхлорат

    Коррозия олова в кислотах, нейтральных и щелочных растворах ускоряется в присутствии деполяризаторов. Она зависит от количества растворенного кислорода или окислителей (соли железа(III), перманганат калия, перхлорат калия, хроматы в небольших концентрациях, органические соединения с окислительными свойствами, щавелевая кислота и др.) Окисные пленки могут вызывать локальную коррозию. [c.142]


    МЕТИЛЕНОВЫЙ СИНИЙ (метиленовая синь, метиленовый голубой) ijHjg INaS — органический краситель, темно-зеленые кристаллы с бронзовым блеском, легкорастворим в спирте, горячей воде, труднее в холодной, М. с. применяют для крашения хлопка, шерсти, шелка. М. с. интенсивно окрашивает некоторые ткани живого организма, поэтому его используют как красящее вещество в микроскопии. М, с. используют в аналитической химии для определения хлоратов, перхлоратов, ртути, олова, титана, при анализе мочи, крови, молока и др, М. с. широко применяют как антидот при отравлениях цианидами, оксидом углерода, сероводородом, нитритами, анилином и его производными. [c.160]

    Для определения содержания ртути в углях 20—400 мг образца в никелевой лодочке сжигают в потоке кислорода (около 35 л/ч) при 400 °С. Продукты сгорания пропускают через два поглотителя с 5 мл раствора перманганата калия в 0,5 и. серной кислоте (1 /о масса/объем). По окончании сжигания пробы поглотительные растворы сливают в колбу вместимостью 100 мл, поглотители моют водой и промывные воды присоединяют к раствору, добавляют 10 капель 20%-ного раствора гидрохлорида гидроксиламина и объем раствора доводят водой до 100 мл. Затем 50 мл раствора переливают в сосуд для аэрации, добавляют 5 мл концентрированной азотной кислоты и 2 мл 20%-ного раствора хлорида олова. Раствор продувают воздухом (около 84 л/ч). Пары восстановленной ртути вместе с воздухом проходят через осушитель с перхлоратом магния и поступают в абсорбционную кювету длиной 18 см СФМ Перкин-Элмер , модель 303. Аналитическая линия 253,7 нм, ток ЛПК 8 мА, ширина щели 1 мм, О содержании ртути судят по высоте абсорбционного пика. В качестве эталона используют водный раствор нитрата ртути, содержащий 0,05 мкг/г ртути. Стандартное отклонение при концентрации ртути 0,59 мкг/г составляет 9,3% [320]. [c.234]

    Чжен Гуан-лу [304] разработал быстрый и точный прямой метод определения небольших количеств индия титрованием раствором динатриевой соли этилендиаминтетрауксусной кислоты при pH 2,3—2,5 или при pH 7—8 в присутствия 1-(2-пиридил-азо)-2-нафтола. Пря pH 2,3—2,5 не мешают щелочные и щелочно-гемельные металлы, алюминий и марганец. При pH 7—8 не мешают медь, цинк, кадмяй, никель, серебро, ртуть и некоторые другие элементы, если к титруемому раствору добавить достаточное количество цианида калия. Трехвалентное железо связывают фторидом калия в присутствии тартрата и небольших количеств цианида. Не мешают хлориды, сульфаты, нитраты, перхлораты, фториды, тартраты и цитраты. Мешают свинец, висмут, галлий и олово. [c.107]


    Соли титана (III) по сравнению с хлоридом олова (И) более легко восстанавливают уран (VI) до урана (IV) [344]. Вследствие этого Для восстановления урана (VI) растворами солей титана (111) нагревания не требуется. Избыток восстановителя устраняют добавлением трехокиси висмута, которая восстанавливается до металлического висмута [781]. Металлический висмут и избыток трехокиси висмута отфильтровывают и фильтрат титруют, как обычно. Для удаления избытка восстановителя более удобным оказалось применение перхлората ртути (И) [998], так как в этом случае необходимость в фильтровании раствора перед титрованием отпадает. [c.87]

    Хлорид тетрафениларсония, вступая в реакцию с перхлоратом, образует нерастворимый комплекс . Перренаты, перманганаты, иодаты, хлооистая ртуть (I), хлористое олово (IV) и хлористый цинк также образуют нерастворимые комплексы и будут мешать открытию перхлората. [c.106]

    Для переведения шестивалентного молибдена в пяти- н трехвалентное состояние применяют многочисленные восста новители металлические Mg, А1, 2п, С(1, РЬ, В1, 8п, Hg, Ад, 5Ь, Си, Ре, N1, Со, растворы солей трехвалентного титана, двухвалентного хрома, двухвалентного олова, трехвалентного молибдена, перхлората одновалентной ртути в присутствии роданидов. Названные восстановители используют в многочисленных титриметрических (стр. 177), фотометрических (стр. 21, 208) и других аналитических методах определения молибдена. [c.92]

    Интересно отметить, -что если константа равновесия системы, состо ящей из двух металлов и их простых ионов, может быть экспериментально найдена и если стандартный потенциал одного из этих металлов известен, то с помощью уравнения (37) можно вычислить стандартный потенциал другого металла. Э от метод действительно был применен для определения стандартного потенциала олова, приведенного в табл. 49. Мелко раздробленные олово и свинец встряхивались в растворе, содержащем перхлораты свинца и олова, до тех пор, пока не было достигнуто равновесие затем посредством анализа этого раствора определялось отношение концентраций ионов свинца и двухвалентных ионов олова. Так как стандартный потенциал свинца известен, то можно было рассчитать стандартный потенциал олова. [c.344]

    Олово (в виде перхлората). .................10 [c.144]

    Не мешают ионы аммония, перхлорат- и нитрат-ионы, мышьяк (V), бор, плавиковая, уксусная, фосфорная и пирофосфорная кислоты, кремнекислота, алюминий, сурьма (III), барий, каль- ций, стронций, бериллий, кадмий, свинец, литий, магний, серебро, торий, цинк, цирконий, никель в количестве до 40 мг/л, олово (IV) в количестве до 200 мг/л и кобальт в количестве до 20 мг/л. [c.878]

    Кинетическая схема, приведенная выше, была впервые установлена на примере винил-2-этилгексилового эфира для трех совершенно различных катализаторов, которые все же попадают в общий класс акцепторов электронов или кислот Льюиса [8]. Этими катализаторами были хлорное олово, перхлорат серебра и трифенилметилкарбониевый ион [14]. Со всеми этими веществами работали в вакууме в условиях тщательного исключения влаги [c.326]

    Картина, подобная изображенной на рис. 17, наблюдается при протолизе целого ряда гидратированных ионов металлов. Так, например, ионы Се + образуют комплексы с сульфат-, нитрат- и даже перхлорат-ионами. Эти комплексы в значительных количествах присутствуют как в сернокислых, так и в азотнокислых и хлорнокислых растворах. В подобных случаях следует указывать именно ту форму растворенного вещества, которая при данных значениях pH и рЬ преобладает. Например, при сочетании протолиза олова (П) с образованием хлоридных комплексов можно писать 5п2+, если рН<2,1 и рС1>1,б. При pH 1 и рС1 О следует писать ЗпСЬ, [c.107]

    По каким характерным внешним признакам можно отличить друг от друга оксиды алюминия и железа (HI), свинца (IV) и олова (IV), висмута (III) и хрома (III), меди (И) и никеля (II) Как тем же путем определить, какое из двух веществ является гидроксидом марганца (II) и гидроксидом железа (III), сульфидом кадмия и сульфидом железа (II), хлоридом и иодидом свинца (II), кристаллогидратом Mg la-GHaO или СоСЛа-бНаО, перхлоратом калия или перманганатом калия, хроматом калия или манганатом калия  [c.338]

    Метиленовый синий (метиленовая синь) ieHisNaS l — органический краситель, применяют для окраски хлопка, шерсти, шелка, в аналитической химии для определения хлоратов, перхлоратов, катионов ртути, олова в медицине. ]Иетилирование — введение в органические соединения метильной группы — СНз. Метилметакрилат — см. Метакрилаты. [c.82]

    Катионы олова (II) при взаимодействии с 15-краун-5 образуют два типа комплексов 1 2, имеющий структуру сэндвича , и 3 2, в котором один катион Sn2+ заключен между двумя молекулами макроциклического лиганда, а два других присутствуют в виде однозарядных комплексных противоионов [SnXg] [565] Первая структура реализуется в присутствии слабо координирующегося перхлорат-аниона, не способного войти в состав иона [SnXg] Комплекс второго типа образуется при наличии в реакционной смеси хлорид- и роданид-анионов Для хлорида олова (IV) известно координационное соединение с DB24 8 состава 2 1 [566] [c.185]


    Дициннамилиденацетон образует темнозеленый блестящий дихлоргидрат. Дальнейшие принадлежащие сюда соли описаны были Штоббе и Гертелем [А. 370, 93 (1909)], а также Цинке и Мюльгау-зеном [В. 36, 120 (1903)]. П. Пфейффер и его ученики особенно изучали перхлораты и соединения с четыреххлористым оловом, а также хлоростаннаты насыщенных и ненасыщенных ароматических кетонов. [c.129]

    Перхлорат олова. Анион перхлората восстанавливается хлористым оловом. Механизм реакции, катализируемый вольфрама-том, изучен Хегтом . [c.62]

    Уиллард и Смит изучили осаждение перхлоратов хлоридом тетрафениларсония. Полученный осадок взвешивают или иодо-метрически оттнтровывают избыток тетрафениларсонийхлорида. Анализу мешают соли рениевой кислоты, перманганаты, иодаты, хлористая ртуть (I), хлористое олово (II) и хлористый цинк. Тетрафениларсонийхлорид в качестве реагента осаждения превосходит нитрон. [c.111]

    В лаборатории автора проведены исследования влияния материала катода на электровосстановление органических соединений. В кислых и щелочных растворах применяли следующие катоды кадмий, цинк, свинец, ртуть, олово, висмут, медь, никель, кобальт и железо. Алюминий применяли только в кисетом, а хром, вольфрам, молибден и магний—только в щелочных растворах. Было также изучено влияние температуры, при которой производится отливка низкоплавкового металла, на свойства этого металла при использовании его в качестве катода. Кадмий, цинк, олово и свипец отливали в формы, находящиеся при комнатной температуре и при температуре, которая на 50° ниже точки плавления данного металла. В этой работе по отливке необходим опыт, а поэтому рекомендуется получить консультацию у металлурга. В тех случаях, когда это возможно, использовали металлы чистотой 99,95% или выше. Кадмий, цинк, свинец и олово применяли в форме полос, переплавленных, как указано выше. Вольфрам, медь и магний получали в форме прутков, молибден—в форме листов и никель—в форме толстых пластин, которые затем распиливали, чтобы придать им нужную форму. Висмут, кобальт и хром применяли в виде гальванических покрытий на меди. Покрытие из висмута легко получали из раствора перхлората висмута [34]. Висмутовые аноды применяли с медным катодом. Ванна представляла собой насыщенный раствор перхлората висмута, содержавший на каждые 100 мл 10,4 г 72%-ной хлорной кислоты и 4,6 г трехокиси висмута. Катодная плотность тока [35] находилась в пределах 0,015—0,018 а/см . Рекомендуется слабое перемешивание раствора в ванне. Висмут в качестве катода применяли в виде гальванических покрытий, так как стержни из чистого висмута слишком хрупки. Хром можно осаждать на меди из ванны, содержащей хромовую кислоту и серную кислоту или сульфаты (см. стр. 338 в книге [21]). Медный катод помещали между двумя анодами из листового свинца. Катодная плотность тока составляла [c.321]

    Хлорид тетрафениларсония (СаНв)4АзС1 может быть использован в качестве реагента в весовом и объемном анализе для определения ртути, олова, золота, платины, кадмия, цинка, перхлоратов, перйодатов, перманганатов и перренатов . В растворах, содержащих хлорид натрия (1,0—2,5 М) и разбавленную кислоту (0,2—1,0 М), исключая азотную, тетрафениларсоний реагирует с последними четырьмя соединениями с образованием нерастворимых солей, которые могут быть взвешены. Остальные элементы не образуют осадков, пригодных для взвешивания. Они осаждаются нри добавлении избыточного количества реактива, которое можно затем определить потенциометрическим титрованием иодом. [c.155]

    Исключительная стабильность триарилметильного карбоний-иона была обнаружена еше в 1902 г., когда было показано, что соответствующие галоидпроизводные и перхлораты ионизируются, диссоциируют и сообщают электропроводность растворам в жидком сернистом ангидриде [1,2]. Далее было обнаружено, что диссоциация перхлоратов совершенно не зависит от природы арильных групп эти соединения рассматриваются как чисто ионные [3]. Диссоциации же галоидпроизводных благоприятствуют электронодонорные группы в пара-полсжении бензольного цикла, а различия электропроводности разных хлоридов указывают на неодинаковую степень их ионизации. Для наблюдения ионов можно использовать данные о электропроводности и спектроскопич ские измерения. Так, три-фенилметильные ионы в концентрированной серной кислоте дают спектр поглошения в ультрафиолетовой области [4]. Аналогичный спектр дают также растворы трифенилметилхлорида и хлорного олова в бензоле [5], трифенилметилхлорида и сулемы в хлорбензоле [6] и трифенилкарбинол на кислотной поверхности алюмосиликата 17]. С помощью ультрафиолетовых спектров можно эффективно изучать (количественно) обратимые реакции с участием карбоний-ионов. В серной кислоте (от средней до высокой концентрации) мн гие арильные карбоний-ионы, по-видимому, находятся в равновесии с соответствующими спиртами [8,9]  [c.233]

    Если смесь тонкоизмельченных металлических олова и свинца взболтать с раствором их перхлоратов и измерить равновесные концентрации олова и свинца в растворе, то можно рассчитать значение Ккот- Если предположить, что коэффициенты активности обоих компонентов одинаковы, то значение /Стерм равно отношению их концентраций. Поправки на различие в коэффициентах активности можно ввести, пользуясь уравнением Дебая—Хюккеля подобные поправки наиболее существенны в случае стандартных окислительно-восстановительных потенциалов. Для такой системы /Стерм = 2,98 при 298 К. Поэтому [c.233]

    Триалкильные соединения КзЗпХ в твердом состоянии всегда ассоциированы за счет анионных мостиков (29.111) и (29.IV). Координация атома олова близка к тригональной бипирамиде с плоскими ЗпМез-группами. В водных растворах перхлораты и некоторые другие соединения ионизуются с образованием катионных частиц, например [МезЗп (НаО) 2]+. [c.591]

    Коррозия олова в кислых, нейтральных и щелочных растворах силивается в присутствии деполяризаторов. Она определяется ко-ичествами растворенного кислорода [3] или окислителей (кис-оты и соли — окислители соли трехвалентного железа, перманга-ат и перхлорат калия, хроматы в малых концентрациях, органи-еские соединения, обладающие окислительными свойствами, апример красители, триметиламин, жженый сахар, щавелевая ислота и др.). Окисные пленки могут способствовать возникнове-ию местной коррозии. [c.403]

    Более перспективной следует считать амальгамную переработку растворов после разложения таллиевых концентратов, полученных другими путями, например бихроматных. По одной из таких схем [174] бихроматный таллиевый осадок смешивается с серной кислотой полученная суспензия (100—200 г л бихромата таллия и 150—300 г л серной кислоты) энергично перемешивается с 10%-ной амальгамой цинка. Хром восстанавливается до трехвалентного, таллий переходит в раствор и цементируется амальгамой. При неоднократном использовании амальгамы получаются концентрированные амальгамы, содержащие 40—50% таллия, 5—7% цинка, 0,5—1,0% кадмия и небольшие количества свинца и других примесей. Очищают таллиевую амальгаму в два этапа. Основную часть цинка и кадмия отделяют электролизом в аммиачно-хлоридном электролите (1,7 н. уюристого натрия, 1,5 н. хлористого аммония и 1,5 н. аммиака). При последующем электролизе в щелочном растворе трилона Б производится очистка от остатков цинка и кадмия, а также от примесей свинца, олова и др. В таком электролите, содержащем 0,5—1 н. NaOH и 0,1 М трилона Б, вследствие образования стойких комплексных соединений сдвигаются потенциалы более электроположительных, чем таллий, металлов в сторону электроотрицательных значений. Это дает возможность проводить глубокую очистку амальгамы. Выделяют таллий из очищенной амальгамы электролизом в перхлоратном растворе (100 г л хлорной кислоты, 40—50 г л перхлората таллия). Описанная технология позволяет получать металлический таллий высокой чистоты с суммарным содержанием примесей менее 0,0004% [174]. [c.227]

    Бесцветный комплексонат висмута имеет максимум свето-поглощения в ультрафиолетовой области при длине волны 263,5 устойчивый в пределах pH 2—9. Состав его отвечает простому комплексному соединению с соотношением висмута с комплексоном, равным 1 1. Уэст и Кол [20] разработали простой метод спектрофотометрического определения висмута, основанный на измерении светопоглощеиия комплексоната висмута в кислых или забуференных ацетатом натрия растворах. Лучше производить определение в кислых растворах с pH 1, так как в этих условиях мешает наименьшее число элементов. Из анионов мешают главным образом нитраты. Сульфаты, перхлораты, хлориды и ацетаты практически не влияют. Могут мешать только хлориды, если они находятся в большой концентрации вследствие образования хлорокомплексов. Не мешает большинство бесцветных катионов. При pH 1 висмут можно определять в присутствии равного количества трехвалентной сурьмы и двухвалентного олова. Медь и железо не должны содержаться в растворе. В кислом растворе не мешают определению небольшие количества марганца, никеля и кобальта. В присутствии свинца, бария или стронция измерения следует проводить в растворе хлорной кислоты. Большие количества свинца (В1 РЬ = 1 50) следует предварительно выделять в виде сульфата свинца центрифугированием. При значительных концентрациях свинца висмут адсорбируется осадком сульфата свинца. [c.194]

    Позже были изучены новые реагенты хлорид 2,4,6-трифенилпиридилия (ТФП) и нитрон [19]. ТФП (2%-ный раствор) образует в 0,2 М растворе НС1 осадки с иодидом, роданидом, нитрагом, перхлоратом, перманганатом, бихроматом, гексацианоферри-том(П) и хлоридными комплексами цинка, свинца, кадмия, олова (II), платины(IV) и золота (III). Осадки не образуют фторид, бромид, иодат, хлорат, сульфат, оксалат и хлоридный комплекс железа (III). Реагент можно использовать для гравиметрического определения 40—160 мг перхлората  [c.404]


Смотреть страницы где упоминается термин Олова перхлорат: [c.253]    [c.109]    [c.366]    [c.391]    [c.217]    [c.56]    [c.83]    [c.603]    [c.128]    [c.17]    [c.311]    [c.329]    [c.232]    [c.407]    [c.128]    [c.220]   
Перхлораты свойства, производство и применение (1963) -- [ c.70 ]

Перхлораты Свойства, производство и применение (1963) -- [ c.70 ]

Повышение эффективности контроля надежности (2003) -- [ c.70 ]




ПОИСК





Смотрите так же термины и статьи:

Перхлораты



© 2025 chem21.info Реклама на сайте