Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворение и химические процессы

    Жидкие растворы по своей природе, свойствам, характеру взаимодействий между частицами очень разнообразны, в связи с чем трудно создать единую количественную теорию, описывающую поведение различных растворов в широкой области концентраций. Наука о растворах —одна из наиболее старых областей естествознания, в развитие которой сделан вклад многими исследователями. В ходе развития учения о растворах были высказаны две точки зрения на природу растворов —физическая и химическая. Физическая теория растворов, возникшая главным образом на основе трудов Вант-Гоффа, Аррениуса и Оствальда, опиралась на экспериментальное изучение коллигативных свойств разбавленных растворов (осмотическое давление, новышение температуры кипения, понижение температуры замерзания раствора и т. п.), зависящих главным образом от концентрации растворенного вещества, а не от его природы. Количественные законы (законы Вант-Гоффа, Рауля) были открыты в предположении, что в разбавленных растворах молекулы растворенного вещества подобны молекулам идеального газа. Отступления от этих законов, наблюдаемые для растворов электролитов, были объяснены на основе теории электролитической диссоциации Аррениуса. Простота представлений физической теории и успешное применение ее как для объяснения свойств растворов электролитов, так и для количественного изучения электрической проводимости растворов обеспечили быстрый успех этой теории. Химическая теория растворов, созданная преимущественно Менделеевым и его последователями, рассматривала процесс образования раствора как разновидность химического процесса, характеризующегося взаимодействием частиц смешивающихся компонентов. Менделеев рассматривал растворы как системы, образованные частицами растворителя, растворенного вещества и неустойчивых химических соединений, которые образуются между ними и находятся в состоянии частичной диссоциации. В классических трудах Менделеева четко сформулированы основные положения теории растворов. Менделеев указывал на необходимость использования всей суммы химических и физических сведений о свойствах частиц, [c.344]


    К физик о-х имическим способам очистки сточных вод следует отнести флотацию мелкодисперсных взвесей, их коагуляцию при помощи коагулянтов и флокулянтов, адсорбцию растворенных примесей (на активном угле, золе, шкалах), экстракцию их растворителями, обратный осмос, электродиализ, отгонку с водяным паром, ионообмен и т. п. Флотацию тонких взвесей и их коагуляцию чаще относят к механической очистке, хотя они основаны на физико-химических процессах (см. с. 12). Эти операции, а также фильтрацию производят непосредственно после удаления крупных взвесей приемами грубой механической очистки. [c.246]

    Химическое обессоливание воды осуществляется при помощи искусственных материалов, называемых ионитами. Иониты разделяются на катиониты — материалы, через которые при фильтровании из обрабатываемой воды извлекаются катионы, и на аниониты, извлекающие из воды анионы (имеются в виду катионы и анионы растворенных в воде солей). Процесс обмена ионов при фильтровании воды через зернистые иониты является сложным физико-химическим процессом. [c.6]

    Образование водородной связи обязано ничтожно малому размеру положительно поляризованного аюма водорода и его способности глубоко внедряться в электронную оболочку соседнего (ковалентно с ним не связанного) отрицательно поляризованного атома. Вследствие этого при возникновении водородной связи наряду с электростатическим взаимодействием проявляется и донорно-акцепторное взаимодействие. Водородная связь весьма распространена и играет важную роль при ассоциации молекул, в процессах кристаллизации, растворения, образования кристаллогидратов, электролитической диссоциации и других важных физико-химических процессах. Например, в твердом, жидком и даже в газообразном состоянии молекулы фторида водорода НР ассоциированы в зигзагообразные цепочки вида [c.92]

    Во всех химических процессах, протекающих в элементах, принимают участие ионы обоих знаков, поэтому по измерениям э. д. с. невозможно определить активность ионов одного знака а+ или а в результате получают среднюю ионную активность а (при известных условиях). Только для химического процесса в элементе в целом можно выяснить все изменения, которые испытали растворенные соли, т. е. одновременно катионы и анионы, и сопоставить измеренные величины Е с изменениями химических потенциалов (1, , активностей а и моляльностей т растворенных солей. Несколько позднее мы рассмотрим некоторые примеры, пока же будем считать, что для простых электролитов (растворена одна соль) коэффициент активности катиона условно равен среднему коэффициенту активности соли. [c.546]


    В табл. В.24 приведены некоторые свойства галогеноводородов. Хорошая растворимость полярных молекулярных веществ НХ в полярном растворителе —воде связана с протеканием при растворении химического процесса. При этом проис- [c.496]

    В заключение параграфа еще раз подчеркнем, что процесс образования раствора, во всяком случае в конденсированном состоянии, т. е. жидком или твердом, это процесс образования нового вещества — раствора, свойства которого отнюдь не сумма свойств компонентов, как это пмеет место в механических смесях (см. гл. 12). С этой точки зрения растворение — химический процесс, сопровождающийся исчезновением одних веществ — исходных компонентов и образованием нового вещества — раствора. [c.236]

    А. Глазуновым [69], В. Я. Аносовым [70], Н. А. Пушимым [71] и его сотрудниками был собран и обработан большой фактический материал по рефрактометрии двойных жидких систем и создана классификация типов диаграмм показатель преломления — состав в зависимости от поведения компонентов в растворах. Предложенная классификация была чисто эмпирической и вполне аналогичной классификациям диаграмм ряда других свойств (вязкости, электропроводности и пр.). Состав системы выражался в молярных долях и исходным допущением было утверждение аддитивности в идеальных системах показателей преломления, как функции молярных долей. Отклонения от аддитивности рассматривались как следствие происходящих при растворении химических процессов. При этом положительные отклонения показателей преломления от аддитивности (т. е. вогнутость кривых показателей преломления к оси составов) считались признаком образования соединений компонентов. Противоположный эффект — отрицательные значения отклонений от аддитивности — приписывался влиянию диссоциации ассоциированных компонентов. [c.119]

    Константы скоростей этих реакций кроме химического процесса связаны также с процессом растворения. Соотношение скоростей сохраняется с увеличением температуры у всех углеводородов, за исключением пропилена, скорость которого при 60 °С становится несколько большей, чем у бутена-1. [c.195]

    Емкостные реакционные аппараты применяют для процессов, где основой является жидкая фаза (системы жидкость — жидкость , жидкость — газ , жидкость — твердое тело ). Они, как правило, имеют перемешивающее устройство. Емкостные аппараты с мешалками используют не только как химические реакторы, но и для различных физико-химических процессов — получения эмульсий, растворения, смешения жидких компонентов и др. [c.223]

    В течение длительного времени растворение рассматривалось в основном как химический процесс. Этого взгляда придерживался и Д. И. Менделеев, исключавший при этом из рассмотрения смеси [c.166]

    Следует подчеркнуть, что поскольку основными физико-химическими процессами в газовой хроматографии являются процессы адсорбции и десорбции (или растворения и испарения), слишком сильно адсорбирующие адсорбенты (или слишком хорошо растворяющие жидкости) оказываются непригодными, поскольку они значительно задерживают процессы десорбции. Необходимо, чтобы процессы десорбции происходили достаточно быстро, иначе соответствующий компонент не успеет пройти колонку за удобное для анализа время. В этом отношении задача га-зо-хроматографической колонки отличается от задачи противогаза (в противогазе необходимо как можно прочнее удержать компонент, отравляющий воздух, т. е. резко увеличить энергию его адсорбции, замедлить его десорбцию). [c.546]

    Электрическая энергия, вырабатываемая элементом (или цепью элементов), равна полезной работе А суммарного процесса, протекающего в элементе, который мы рассматриваем как термодинамическую систему. Полезная работа Л, процесса максимальна н равна убыли изобарного потенциала системы —AG. Это изменение изобарного потенциала вызвано совокупностью электрохимических реакций на электродах, т. е. суммарной химической реакцией или другими физико-химическими процессами (растворение, выравнивание концентраций, фазовое превращение и др.), протекающими обратимо. В том случае, когда процесс является обратимым, можно, заставляя элемент работать при почти полной компенсации его э.д.с. внешней разностью потенциалов, т. е. заставляя его находиться бесконечно близко к равновесию (этому состоянию и соответствует измеренная величина ), вычислить изменение изобарного потенциала системы AG через измеренную э.д.с..  [c.527]

    Почти все чистые жидкости, газы и большинство твердых неметаллических тел электрический ток не проводят (непроводники). Но в растворенном или расплавленном состоянии многие неметаллические вещества тоже проводят электрический ток. Их проводимость существенно отличается от проводимости металлических проводников прохождение тока через растворы и расплавы сопровождается разложением вещества — электролизом. Вещества, растворы и расплавы которых проводят электрический ток при одновременном протекании химического процесса, называются электролитами (проводники второго ряда). [c.162]


    Согласно современной пленочной теории пассивности, скорость коррозии металла в пассивном состоянии не зависит от потенциала полной пассивности У,,, п и от потенциала, который положительнее его (см. рис. 210), так как определяется скоростью растворения пассивной пленки, т. е. химическим процессом, а анодный ток расходуется только на образование новых порций окисла, поддерживая толщину его постоянной. [c.307]

    При термохимических расчетах реакций, протекающих в растворах, надо учитывать тепловой эффект процесса растворения химического соединения в данном растворителе. [c.93]

    Стандартные теплоты растворения веществ в воде и других растворителях сравнительно невелики и обычно составляют величину порядка 40 кДж/моль. Теплота растворения менее чувствительна к природе веществ, чем теплоты химических процессов, В табл. 2.4 приведены значення А//р некоторых веществ. Указанные значения отвечают процессу растворения 1 моль данного вещества в определенном количестве растворителя (га моль). АЯ( р) зависит от концентрации раствора. Так, если [c.171]

    Исследование течения реакции во времени составляет содержание химической кинетики. Под кинетикой в широком смысле слова понимают учение о скоростях различных процессов — химических реакций, растворения, кристаллизации, парообразования и т. д. Мы будем рассматривать лишь химические процессы. [c.213]

    На основе математических методов химической термодинамики можно рассчитывать температурные профили для анализа процессов типа равновесный выход — температура, равновесный выход — тепловые эффекты и другие. Методы химической термодинамики являются теоретической основой для создания математических моделей различных физико-химических процессов процессов испарения и конденсации, кристаллизации и растворения химических промышленных реакций разного типа и сложности, как это было показано в приведенном выше материале. [c.260]

    Химические аппараты предназначаются для осуществления в них химических, физических или физико-химических процессов (химическая реакция, теплообмен без изменения агрегатного состояния, испарение, конденсация, кристаллизация, растворение, выпарка, ректификация, абсорбция, адсорбция, сепарация, фильтрация и т. д.), а также для хранения или перемещения в них различных химических веществ. [c.6]

    Лопастные мешалки широко применяются для интенсификации тепловых, диффузионных и химических процессов, а также при растворении различных веществ и приготовлении эмульсий и суспензий. Лопастные мешалки отличаются простотой устройства и низкой стоимостью изготовления, обеспечивая при этом хорошее перемешивание жидкостей. Применение лопастных мешалок малоэффективно для приготовления эмульсий из жидкостей, значительно отличающихся по удельному весу. [c.107]

    Термохимией называется раздел химической термодинамики, в котором рассматривается применение первого начала (закон Гесса) для вычисления тепловых эффектов различных физико-химических процессов химических реакций, фазовых переходов, процессов кристаллизации, растворения и др. Для практики наибольший интерес имеют термохимические расчеты теплового эффекта химической реакции. [c.90]

    Физические и физико-химические процессы сушка мелкозернистых, пастообразных и жидких материалов, рудных концентратов, сублимационная очистка веществ, растворение и кристаллизация солей, адсорбционная очпстка газов, термическая обработка металлов, нагрев и охлаждение газов и др. [c.110]

    Измельчение широко применяется в химической технике, так как использование измельченных твердых тел позволяет значительно ускорить растворение, химическое взаимодействие, обжиг и другие процессы, протекаюш,ие тем быстрее, чем больше поверхность уча-ствуюш,их в них твердых тел. [c.449]

    Машины для перемешивания материалов. Перемешивание применяют для получения однородных растворов, эмульсий, суспензий, для ускорения растворения твердых и пастообразных веществ в жидкости, для обеспечения химических реакций и т. д. Перемешивание интенсифицирует тепловые, диффузионные и химические процессы. [c.34]

    Все представленные гипотезы о сущности и механизме спекания и коксообразования рассматривают этот процесс как физический и отчасти как физико-химический. Они подчеркивают значение таких явлений, как расплавление, растворение, диспергирование, смачивание, склеивание и т. д. Общий недостаток этих гипотез состоит в том, что они недооценивают роль химических процессов при спекании. [c.235]

    Химические процессы, сопровождающиеся увеличением (хемосорбция, химическая кристаллизация) или уменьшением (десорбция или химическое растворение) массы твердого тела, требуют значительной энергии активации с повышением температуры 01ш интенсифицируются. [c.56]

    Принцип Ле Шателье универсален, так как применим не только к чисто химическим процессам, но и к физико-химическим явлениям, таким, как кристаллизация, растворение, кипение, фазовые превращения в твердых телах. Рассмотрим применение принципа Ле Шателье к различным типам воздействия. [c.62]

    Основной химический процесс при растворении оксида алюминия в криолите при 950 °С происходит диссоциация АЬОз  [c.183]

    Обычно рассматривают три стадии процесса изотермической перегонки растворение или испарение мелких частиц, перенос вещества от мелких частиц к крупным и рост крупных частиц. В зависимости от условий каждая из этих стадий может быть лимитирующей, т. е. иметь меньшую скорость и, таким образом, в большей степени тормозить процесс изотермической перегонки. Первая и третья стадии относятся к химическим процессам и, как [c.276]

    При протекании элементарного химического процесса в растворе частицы окружающей среды — молекулы растворителя и молекулы или ионы растворенных веществ — в какой-то степени участвуют в этом процессе. В связи с этим величина константы скорости в той или иной мере зависит от того, в каком растворителе протекает рассматриваемая элементарная реакция. [c.124]

    Воздух и газы используются при бурении с продувкой. Они являются дисперсной фазой аэрированных промывочных жидкостей (ней) и попадают в буровые суспензии и эмульсии как на поверхпости, так и при разбуривании газоносных пластов. Даже в те. случаях, когда газы не являются необходимым компонентом промывочных жидкостей, они присутствуют в них, принимая разностороннее участие в физико-химических процессах взаимодействуют с минеральными поверхностями и растворенными веществами изменяя структуру воды, влияют на растворимость в ней минералов выделяясь из дисперсионной средЕ>1, образуют газовую фазу, которая отражается на технологических характеристика.х буровых растворов. [c.29]

    Попытки установить связь между формой кривых показателей преломления и процессами, происходящими при образовании растворов, были сделаны еще в XIX в. (Сент-Клер-Девилль, Фери, Фершаффельт) . На принципиальную возможность исследования двойного обмена в растворах с помощью рефрактометра указывал также Пильчиков , а Сапожников изучал рефракцию водных растворов ацетона в связи с образованием гидрата. Однако систематическое изучение этого вопроса и разработка рефрактометрического метода физико-химического анализа были предприняты во второй четверти XX в., главным образом в ряде работ, относящихся к известному направлению академика Курнакова и его школы . Аносовым, Пушиным и его сотрудниками был собран и обработан большой фактический материал по рефрактометрии двойных жидких систем и создана классификация типов диаграмм показатель преломления — состав в зависимости от поведения компонентов в растворах. Предложенная классификация была чисто эмпирической и вполне аналогичной классификациям диаграмм ряда других свойств (вязкости, электропроводности и пр.). Состав системы выражался в молярных долях, и исходным допущением было утверждение аддитивности в идеальных системах показателей преломления как функции молярных долей. Отклонения от аддитивности рассматривались как следствие происходящих при растворении химических процессов. При этом положительные отклонения показателей преломления от аддитивности (т. е. вогнутость кривых показателей преломления к оси составов) считались признаком образования соединений компонентов. Противоположный эффект — отрицательные значения отклонений от аддитивности — приписывался влиянию диссоциации ассоциированных компонентов. [c.61]

    Сосуд-работающая под давлением герметически закрытая емкость, предназначенная для ведения физико-химических процессов, а гакжс для хранения и перевозки сжатых, сжиженных и растворенных газов и жидкостей. В отличие от аппарата сосуд не имеет внутренних устройств и работаез иод давлением емкости (шаровые, цилиндрические, промежуточные з схнологических установок), бул гагы, ба глоны. [c.11]

    Растворение металла, идущее одновременно с образованием Нг из ионов Н в растворе, представляет собой случай, в котором анодный и катодный процессы протекают на одном и том же электроде. (Эти процессы называются полиэлектродными.) При этом как диффузия, так и химические процессы могут стать лимитирующими. Ранние работы по растворению амальгам натрия [7-6] в кислотах и основаниях указывают на то, что скорость реакции имеет первый порядок по Н" и приблизительно порядок /2 по концентрации натрия. Для кислых растворов эти факты объяснялись тем, что процесс лимитируется диффузией. Однако, как показали более поздние исследования [77—80], скорость растворения металлов в различных кислотах и растворителях пропорциональна концентрации недиссоциированной формы кислоты и относительные константы скорости в различных кислотах хорошо ложатся на прямую Бренстеда. По-видимому, в этом случае лимитирующей стадией является перенос протона от молекулы недиссоциированной кислоты к поверхности металла , причем реакция подвергается специфическому катализу кислотами. При растворении солей, таких, как Na l, в системах с перемешивающим устройством предполагается, что скорость реакции лимитируется диффузией, причем диффузия происходит через пограничный слой насыщенного раствора соли на поверхности кристаллов соли. Хотя подобная картина, по-видимому, является правильной для простых солей, таких, как галогеииды щелочных металлов, в случае солей металлов переменной валентности картина может быть другой. Так, например, безводный СгС1з очень медленно растворяется в воде, при этом скорость реакции не зависит от перемешивания. Было обнаружено, что небольшое количество Сг " в растворе оказывает огромное влияние на скорость реакции. Вероятно, в этом случае осуществляется перенос заряда между частицами Сг - в растворе и Сг в твердой фазе. Эти системы, по-видимому, заслуживают дальнейшего изучения. [c.557]

    Сравнивая еще раз выражения (XXI, 2) и (XXI, 8), видим, что хотя в цепи без переноса (б) наличие ртутно-каломельного электрода не отражается на характере суммарного химического процесса всей цепи,- величина э.д.с. этой цепи по уравнению (XXI, 2) вдвое больше, чем та, которая имелась бы в цепи без ртутно-каломельного электрода, т. е. в цепи с переносом (а) [уравнение (XXI, 8а)], если бы в частном случае диффузионный потенциал отсутствовал (при = 0,5). Дело в том, что в цепи типа (б) ион С1 переносится из одного раствора в другой путем растворения и выделения в осадок твердой НдаСЬ, и количество электричества Р, переходящее от одного электрода к другому, эквивалентно переносу из одного раствора в другой только грамм-иона Н+, фактическая же работа переноса Н+С1" вдвое больше. [c.566]

    Предположение о существовании в водных растворах 1Идретов было высказано и обосиог5ано в восьмидесятых годах XIX века Менделеевым, который считал, что растворение — не только физический, но и химический процесс, что вещества, растворяющиеся в воде, образуют с ней соединения. Об этом свидетельствует прежде все1 о изучение теплот растворения. [c.217]

    Основные характеристики процесса измельчения. Измельчение — процесс уменьшения размеров кусков твердого материала механическим воздействием — широко используют в различных технологических процессах химической промышленности. В одних случаях, например при измельчении природных материалов, этот процесс относится к начальной или промежуточным стадиям производства, и получаемый измельченный материал направляется на дальнейшую переработку, в других — позволяет получить товарную продукцию (rtpe -порошки, пигменты и др.). Измельчение позволяет увеличить поверхность фазового контакта взаимодействующих масс, что значительно интенсифицирует такие процессы, как растворение, химическое взаимодействие, горение и пр. [c.156]

    В I группу вхоят методы, совершенствующие процесс ППД добавлением в закачиваемый рабочий агент (в воду) того или иного химического реагента органической или неорганической природы. Растворение химического реагента в закачиваемой воде или подача их в пласт в виде оторочек направлено на изменение объемных свойств воды или [c.51]

    Теплоты растворения ЛЯаэз сравнительно невелики и обычно составляют величину порядка 10 ккал. Они менее чувствительны к природе веществ, чем теплоты химических процессов. В табл. 5 приведены значения ДЯра<,тв некоторых веществ. [c.19]

    Закон Гесса распространяется не только на различные химические реакции, но и на всевозможные фнзнко-химические процессы, сопровождающиеся энергетическими эффектами, как то фазовые нревращення (плавление, иснаренне, конденсация, кристаллизация), растворение, поглощение вещества на поверхности раздела фаз и др. [c.79]


Смотреть страницы где упоминается термин Растворение и химические процессы: [c.199]    [c.231]    [c.182]    [c.43]    [c.174]    [c.238]   
Электрохимия растворов издание второе (1966) -- [ c.13 ]




ПОИСК





Смотрите так же термины и статьи:

Назначение сульфатного отделения. Химизм процесса. Физико-химические условия образования и растворения кристаллов — Существующие методы производства сульфата аммония

О каталитических процессах выщелачивании в химическом обогащении Избирательные ингибиторы растворения минералов

Процесс анодного растворения металла при образовании ионов различной валентности Главнейшие электрохимические характеристики химических источников тока

Растворение как гетерогенный химический процесс

Растворение химическое

Физико-химические основы процессов растворения и кристаллизации хлористого калия

Физико-химическое моделирование растворении и выщелачивании иа Кинетика процессов химического разложении и выщелачивания минералов

Химическая теория растворов Д. И. Менделеева. Тепловой эффект процесса растворения



© 2024 chem21.info Реклама на сайте