Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Типы связей воды

    Соединения со степенью окисления фосфора —3. При нагревании фосфор окисляет почти все металлы, образуя фосфиды. В зависимости от природы металла доля того или иного типа связи в фосфидах меняется в широких пределах. Так, фосфиды s-элементов И группы состава Э3Р2 можно рассматривать как ионно-ковалентные соединения. Они солеподобны, легко разлагаются водой  [c.367]


    ТИПЫ СВЯЗИ ВОДЫ [c.649]

    Объясните процесс электролитической диссоциации в воде веществ с ионным типом связи. Приведите примеры. [c.74]

    В следующем параграфе рассматриваются различные типы связей воды с растворенными веществами. [c.15]

    Элементарной структурной ячейкой силикатов является кремнекислородный тетраэдр такие тетраэдры могут образовывать циклические, цепные, листовые и трехмерные каркасные структуры. Часть атомов кремния способна замещаться алюминием, но при этом компенсация заряда требует введения дополнительных катионов, что приводит к усилению электростатического вклада в химическую связь кристалла. На примере силикатов иллюстрируются четыре из пяти типов связи, обсуждавшихся в данной главе ковалентная связь между атомами кремния и кислородом в тетраэдрах, вандерваальсовы силы между силикатными листами в тальке, ионное притяжение между заряженными листами и цепочками, а также водородные связи между молекулами воды и силикатными атомами кислорода в глинах. Если включить в этот перечень еще никелевые катализаторы на глиняном носителе, то мы охватим и пятый тип химической связи (металлический). [c.640]

    Вода является составной частью бетона. Но форме связи ее с твердым скелетом различают химическую, физико-химическую и физико-механическую связанную воду. Наиболее прочной формой связи является химическая вода. Ее удаление из бетона возможно лишь при температуре выше 100 °С, т.е. при дегидратации цементного камня. Физико-химической связью обладает адсорбционная влага в порах и капиллярах, радиус которых менее 10 см. Вода в адсорбционных слоях отличается от свободной воды по химическим и термодинамическим свойствам. Диэлектрическая постоянная адсорбционной влаги в 40 раз меньше, чем у свободной воды, а температура замерзания на несколько десятков градусов ниже. Физикомеханический тип связи воды в бетоне является наименее прочным. Она может быть полностью удалена из бетона при его высыхании. [c.237]

    Теряя электроны, атомы превращаются в положительные ионы с зарядностью 1+ и 2+. Они относятся к типу благородногазовых ионов, бесцветны, обладают большим радиусом и малыми поляризующими свойствами. Большинство соединений их бесцветны, обладают высокой термической устойчивостью, хорошей растворимостью в воде. Ряд соединений лития и бериллия (несколько менее натрий и магний) отличаются от остальных своих аналогов по подгруппам. Это связано с небольшими величинами радиусов их ионов и особенностями структуры электронной оболочки последних, во внешнем слое которой содержится по 2 электрона, тогда как все другие ионы имеют по 8 электронов. Соединения лития во многом сходны с соединениями магния, а соединения бериллия — с соединениями алюминия (аналогия по диагонали). Ионы лития и бериллия образуют комплексные соединения, что для ионов щелочных и щелочноземельных металлов, как правило, нехарактерно. Большинство соединений имеют гетерополярный тип связи и могут быть отнесены к ионному типу молекул. В растворе все соединения ведут себя как сильные электролиты. [c.270]


    В настоящее время известно, что ионообменивающими веществами могут быть как кристаллические минералы, так и вещества коллоидного характера. В то время минералоги особенно интересовались цеолитами, их крупнопористой структурой и способностью образовывать смешанные кристаллы, вопросами физико-химического равновесия и различными типами связи воды в цеолитах, специалисты же в области коллоидной химии нашли [c.7]

    Интенсивная капиллярная конденсация, так же как и развитие коррозионных процессов, наблюдается при влажности воздуха более 70—75%. Поэтому эти значения влажности иногда считают критическими [76, 100]. Для бетона, являющегося капиллярно пористым материалом, взаимодействие с влагой воздуха несколько отличается. Вода является составной частью бетона. По формам связи с твердым телом различают химическую, физико-химическую и физико-механическую воду [71]. Наиболее прочной формой связи является химическая. Ее удаление из бетона возможно лишь при температуре выше 100°С, т. е. при дегидратации цементного камня. Физико-химической связью обладает адсорбционная влага в порах и капиллярах, радиус которых менее 10 см. Считается, что при влажности воздуха до 45% влага связана химически и физико-химически [6, 99]. Физико-механический тип связи воды в бетоне является наименее прочным. Влага полностью обладает свойствами свободной воды. Она образуется в результате капиллярной конденсации в порах и при увлажнении бетона осадками [c.13]

    Зависимость давления пара влаги над поверхностью материала от его влажности определяется типом связи молекул воды с материалом. Различают несколько форм связи влаги с материалом (в порядке убывающей энергии связи). [c.405]

    Растворимость веществ существенно зависит от природы растворяемого вещества и растворителя, температуры и давления. Причины различной растворимости веществ пока не выяснены, хотя их связывают с характером взаимодействия молекул растворителя и растворенного вещества. Например, известно, что молекулярные кристаллы, структурными единицами которых являются молекулы с ковалентным неполярным типом связи (сера и др.), практически нерастворимы в воде, так как энергия разрушения кристаллической решетки настолько велика, что не может быть компенсирована теплотой сольватации, которая очень мала. [c.63]

    Из механизма диссоциации ясно также, что диссоциировать будут вещества, обладающие ионной или полярной связью, поэтому степень диссоциации зависит от природы растворенного вещества, вернее, от типа связи в его молекулах. Следовательно, из приведенных примеров растворов Na l (ионная связь), НС1 (полярная связь) и I2 (ковалентная связь) диссоциировать будут Na l и ИС1, а хлор в растворе будет находиться в виде молекул хлора. Если же в растворе оказываются сложные молекулы с различным типом химической связи, то распад на ионы произойдет в том месте молекулы, где существуют ионная и полярная связь. Так, молекула азотной кислоты HNO3 диссоциирует на ионы водорода Н + и кислотный остаток N0 , , который не распадается под действием воды, так как азот с кислородом связаны здесь ковалентной связью. [c.44]

    Еще до обоснования теории растворов опытным путем было установлено правило, согласно которому подобное растворяется в подобном. Так, вещества с ионным (соли, щелочи) или полярным (спирты, альдегиды) типом связи хорошо растворимы в полярных растворителях, в первую очередь в воде. Метиловый, этиловый и пропило-вый спирты смешиваются с водой в любых соотношениях. По мере дальнейшего увеличения углеводородного радикала в молекуле [c.63]

    Действие растворителя на растворенное вещество настолько велико, что может вызывать электролитическую диссоциацию веществ, не обладающих ионным типом связи. Например, полярные молекулы хлороводорода, растворяясь в воде, разрываются ее молекулами на ионы. При растворении хлороводорода в бензоле, являющемся менее полярным растворителем, чем вода, диссоциации молекул не происходит. Поэтому раствор хлороводорода (кислота) в воде проводит электрический ток, а в бензоле нет. [c.69]

    Внешний электронный слой атома фосфора содержит 5 электронов (3s 3p ). В соединениях соответственно проявляются степени окис-лепи.ч - -5, - -3 и —3. Высокие степени окисления предопределяют преимущественно ковалентный тип связи фосфора с другими элементами. В воде фосфор не растворяется и с ней не реагирует. На воздухе фосфор горит с образованием оксида фосфора (V)  [c.125]

    Неполярный ковалентный тип связей в молекулах галогенов соответствует их хорошей растворимости в неполярных растворителях, причем растворы не проводят электрический ток и молекулы в них не ассоциированы. Растворимость галогенов в воде незначительна. Растворы в неполярных растворителях окрашены так же, как галогены в свободном состоянии. При наличии у молекул растворителя донорных свойств (основание) окраска растворов меняется. [c.495]


    Нитевидная коррозия не зависит от освещения, металлургических характеристик стали и наличия бактерий. Хотя нити видны только под прозрачными лаками и эмалями, они, вероятно, достаточно часто образуются под светонепроницаемыми пленками краски. Появление нитей наблюдалось при использовании различных типов связующего и на различных металлах, включая сталь, цинк, алюминий, магний и хромированный никель. На стали этот вид коррозии наблюдается только на воздухе с большой относительной влажностью (например, 65—95 %). При 100 % относительной влажности нити могут расширяться, вспучивая покрытие. Если пленка относительно непроницаема для воды, то нити могут вовсе не образоваться, как это установлено в случае парафина [14]. Нитевидная коррозия может служить характерным примером явлений, связанных с образованием элементов дифференциальной аэрации. [c.256]

    Как видно из данных табл. 1, некоторые типы связей (I—I, Р—Р, О—О) сравнительно непрочны. Например, образование свободного радикала ОН из воды с разрывом связи Н—ОН требует затраты энергии 116 ккал/моль, образование того же свободного радикала из перекиси водорода с разрывом связи НО—ОН — 48 ккал/моль, а из трет-бутилгидроперекиси с разрывом связи (СНз)зСО—ОН — 39 ккал/моль. [c.18]

    Как происходит электролитическая диссоциация в воде веществ с ковалентным типом связи Приведите примеры. [c.74]

    Комплексные соли, как правило, слабополярны (по диэлектрической проницаемости их бензольные растворы незначительно отличаются от чистого бензола), они легко взаимодействуют с водой, отличаются низкой стабильностью. Дифференциальнотермическим анализом было показано, что соли аминов и органических (жирных) кислот разлагаются при температурах примерно 125°С. Сравнительно низкая термическая стабильность соединений этого класса, зависящая от типа связи анионной и катионной частей ингибиторов, определяет такие важные их свойства, как объемные (изоляционные) и поверх- [c.294]

    Какой тип связи осуществляется между ионами указанных металлов и молекулами воды  [c.87]

    Обычно вещества, состоящие из полярных молекул, и вещества с ионным типом связи лучше растворяются в полярных растворителях (вода, спирты, жидкий аммиак), а неполярные вещества — в неполярных растворителях (бензол, сероуглерод). Это подтверждает известное правило подобное растворяется в подобном . [c.221]

    Гидриды. Гидриды щелочных металлов относятся к солеобразным соединениям с ионным типом связи, реакционноспособны, используются как сильные восстановители. С водой реагируют по уравнению [c.253]

    Что же касается общетеоретических вопросов, то при описании многих тем школьного курса химии учение о периодичности позволяет глубже раскрыть их содержание. Так, при изучении водных растворов следует обратить внимание на свойства растворителя (вода) и свойства растворяемых веществ (типы связи, строение молекулы, степени окисления), которые определяют такое свойство веществ, как их растворимость, поведение в воде (электролитическая диссоциация, гидролиз, окисление—восстановление). При описании состава химических соединений следует обратить внимание на взаимосвязь классификации соединений по составу с положением элементов в системе (совокупность свободных атомов, номер группы и периода). Это дает возможность устанавливать связи между разными классами соединений (оксиды, фториды, хлориды, гидриды, интерметаллиды) и видеть особенности каждого из них по составу (насыщенные или ненасыщенные молекулы), по агрегатному состоянию и строению (водородные соединения неметаллов, как правило, газообразны при обычных условиях, гидриды типичных металлов — ионные кристаллы) и т. п. [c.71]

    Помимо воды, входящей в состав оксидов, на поверхности металла может присутствовать вода, связанная с ним электронодонорно-акцепторным (ЭДА) взаимодействием, водородной связью или ван-дер-ваальсовыми адсорбционными силами [303]. Тип связи воды с поверхностными атомами металла зависит от природы и металла, и электролита. Так, в кислой или нейтральной среде поверхность железа несет на себе положительный заряд, и можно ожидать электронодонорного взаимодействия воды с этой поверхностью. В щелочной среде или при недостатке НзО+-ионов вблизи электродов предпочтительна ориентация воды в двойном слое атомами водорода к поверхности металла. Следовательно, энергия связи воды с поверхностью металла может изменяться в широком интервале — от химической связи до слабой водородной или ван-дер-ваальсовой. [c.292]

    В зависимости от типа менее электроотрицательного, чем кремний, элемента тип связи в силицидах изменяется от ионно-ковалентного до металлического. Силициды X- и -элементов I и II групп, например Са231, СаЗ и Са312,— полупроводники. В химическом ошошении силициды этого типа неустойчивы. Они более или менее легко разлагаются водой и особенно кислотами. [c.412]

    С качественной стороны растворимость галогенов в воде н органических растворителях можно понять, сравнив взаимодействия между молекулами растворимых галогенов и молекулами растворителя. со взаимодействием между молекулами самого раствори геля. Например, если рассмотреть процесс растпорення йода (кристаллическая решетка его построена по молекулярному типу) в воде, то надо иметь в виду, что между молекулами йода и воды будут действовать только вандерваальсовы силы, тогда как между молекулами воды будут действовать значительно Солее сильные связи— водородные. Отсюда становится понятной плохая растворимость йода в воде. Если же рассмотреть растворение йода (и других галогенов) в четыреххлористом углероде, то надо учесть, что н молекулы галогенов, и молекулы I между собой связан только ваидерваальсовыми силами — отсюда молекулы U будут е динаковой силой притягивать и близко находящиеся молекулы t , н молекулы галогенов. Отсюда понятна хорошая раствори-мо ть галогенов в четыреххлористом углероде и других органических растворителях.  [c.264]

    Приведенные данные показывают, что изменения нефтей под воздействием различных факторов — глубины, температуры, пластовых вод — в Тимано-Печорской НГП контролируются генетическим типом нефтей, что очень важно для прогнозирования их состава. Наличие в разрезе нескольких генетических типов связано с тем, что они генерировались разными нефтематеринскими породами, именно этим обусловлены разли- [c.54]

    В процессе эмульгирования мономеров в растворе анионоактивного эмульгатора образуются эмульсии прямого типа масло — вода. Длительное время в качестве эмульгатора применялась натриевая соль дибутилнафталинсульфокислоты, известная под названием некаль, с добавкой небольших количеств мыл жирных кислот. Однако отсутствие возможности организовать биохимическую очистку сточных вод в связи с токсичным действием некаля на микроорганизмы привело к необходимости применения других эмульгаторов. Из них наибольшее значение приобрели мыла карбоновых кислот — канифольные и жирнокислотные эмульгаторы, применяемые в смеси или индивидуально. Замена некаля этими эмульгаторами, помимо решения проблемы биохимической очистки сточных вод, позволила одновременно улучшить качество бутадиен-стирольных каучуков. [c.244]

    В основе современных представлений о гидрофильности дисперсных систем лежит учение о связанной воде [1, 64]. Исследователи уже давно пытались разделить связанную воду на различные типы. Одна из первых попыток классифицировать воду по формам ее связи с дисперсными материалами была предпринята С. Маттсоном в 30-е годы [65]. Он разделял воду на структурно связанную (эту воду сейчас принято называть конституционной), гигроскопическую, при взаимодействии молекул которой с дисперсными материалами выделяется теплота смачивания (такую воду сейчас называют сорбционно связанной или прочносвязанной [661), капиллярную воду и воду осмотического впитывания. Классификации различных типов связанной воды, близкие к приведенной, были предложены также А. В. Думанским [1] и П. А. Ребиндером [67]. [c.31]

    Различными физическими методами выявлены разные типы взаимодействия воды с биополимерами. Прямые структурные методы—нейтронное рассеяние и рентгеноструктурный анализ— показали, что в кристаллах ДНК и белков некоторое количество воды жестко связано с биополимером. Например, методом рентгеноструктурного анализа рубредоксина с разрешением [c.45]

    Типические элементы образуют оксиды, формулы которых можно предсказать на основании положения элементов в периодической таблице например, элементы третьего периода образуют следующие оксиды НагО, МяО, А12О3, ЗЮз, Р2О5 63 и С12О7. Оксиды элементов, находящихся в левой части таблицы, являются сильными основаниями. Для них характерно наличие больщого отрицательного заряда на атомах кислорода, и по типу связи они принадлежат к ионным соединениям. Температуры плавления этих ионных оксидов, как правило, достигают 2000°С, но многие из них разлагаются уже при более низких температурах. Они реагируют с водой с образованием основных растворов [c.321]

    Предполагается, что в связи с гидрофильностью железа, адсорбция ингибиторов происходит не на чистой её поверхности, а на поверхности, покрытой слоем гидроксид-радикалов, образующихся в ходе диссоциативной адсорбции воды. Доказывается два типа адсорбции воды Ме - ОН (А) и Ме -НО (В). В слу гае А адсорбция ингибитора за счет неподеленной пары электронов азота приводит к вытеснению ОНад . В случае В адсорбция предполагается за счет активного атома водорода, образующего связь с кислородом поверхностного гидроксида. Вытеснение адсорбированной воды при адсорбции аминов может происходить и другим путем. Амин, адсорбирующийся за счет электронной пары азота, образует связь типа водородной с молекулами воды. Такой ассоциат достаточно лабилен и покидает поверхность. На освободившемся месте поверхности адсорбируется амин, который и играет роль ингибитора. Водовьгтесюиощая способность аминов и их защитные свойства связаны здесь [c.115]

    На рис. 12 приведены плоскостные схемы всех рассмотренных типов кристаллических решеток. Однако, принимая такую классификацию кристаллов, всегда нужно иметь в виду, что характер разных связей даже в одном и том же кристалле может быть не одинаковым и классификационные признаки не всегда четко и хорошо выражены. Наряду с кристаллами, относящимися к одному из четырех рассмотренных видов связи, существуют кристаллы с различными переходными и смешанными формами связи. Это, например, целиком относится к кристаллогидратам, в которых встречаются одновременно ионный тип связи между катионами и анионами соли, ковалентная связь между атомами, входящими в состав аниона, а также полярные связи внутри молекул воды и ионоди-польная связь молекул с ионами. [c.34]

    Карбиды — это соединения углерода с металлами, кремнием, бором. Карбиды щелочных, щелочноземельных элементов (аце-тилениды) представляют собой солеподобные соединения с ионным типом связи между углеродом и элементом (кратность связи между атомами углерода равна трем). Поэтому при их взаимодействии с водой образуется ацетилен  [c.258]

    В периодической системе элементов Д. И. Менделеева водород занимает первое место. Особенности строения атома водорода позволяют формально рассматривать его как аналог галогенов. Для водорода характерны реакции, в которых он отдает электрон с образованием иона Н, а также присоединяет электрон с образованием гидрид-иона Н ". Самым распространенным соединением водорода является вода. Ее молекула гюстроена по кова-лентно-полярному типу связи, имеет угловую форму с валентным углом 104,5°. Молекулы воды образуют ассоциации благодаря водородным связям. Из химических свойств воды наибольшую практическую значимость имеют процессы гидратации и гидролиза. Активные металлы восстанавливают из воды водород, а галогены окисляют кислород. [c.164]


Смотреть страницы где упоминается термин Типы связей воды: [c.277]    [c.277]    [c.903]    [c.267]    [c.293]    [c.37]    [c.45]    [c.383]   
Физическая химия силикатов (1962) -- [ c.29 ]




ПОИСК





Смотрите так же термины и статьи:

типы связ



© 2025 chem21.info Реклама на сайте