Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Давление и концентрация азеотропных компонентов

    Пример 1.6. В первых трех колонках табл. 1.6 приведены опытные данные Розанова по давлениям насыщенных паров компонентов и составам равновесных фаз системы ацетон — хлороформ под давлением 101 325 Па. При температуре 65 эта система образует азеотроп с максимальной точкой кипения и концентрацией ацетона в сосуществующих фазах хе=Уе=0,ЬЪЪ. При температуре азеотропной точки давление насыщенных паров ацетона 1=133 322 Па, а хлороформа />2=114 390 Па. Требуется рассчитать данные для построения кривой равновесия у—х по уравнениям Ван Лаара и Маргулеса и сравнить их с приведенными в табл. 1.6 опытными данными. [c.55]


    Пусть сырье Ь имеет начальную концентрацию хь, меньшую, чем концентрация азеотропной смеси Е , отвечающая меньшему давлению р. , при котором работает одна из колонн. Если ввести в другую колонну, работающую под более высоким давлением р , смесь Ь сырья Ь и практически чистого азеотропа Е , то в ходе разделения из низа этой колонны будет поступать практически чистый компонент ш, а с верха — дистиллят, представляющий смесь, весьма близкую по составу к азеотропу Еу. Если смесь Еу подать в качестве сырья во вторую колонну, работающую под меньшим давлением р , то из ее низа отойдет уже практически чистый компонент а, а с верха колонны — та самая, близкая к азеотропу 2 система, которая в смеси с исходным сырьем Ь поступает на разделение в первую колонну. Концентрация х этой смеси Ь = Ь Е , очевидно, принадлежит интервалу хь<- х ь<. хе2- в рассматриваемой схеме разделения положительного гомоазеотропа компоненты а и IV исходной смеси отводятся в качестве нижних продуктов колонны. [c.325]

    Второй закон если компоненты образуют азеотропную смесь, то следует различать два случая при наличии максимума на кривой давления пара с повышением температуры азеотропной смеси в ней возрастает концентрация компонента, обладающего большей теплотой испарения при наличии минимума на кривой давления пара возрастает концентрация того компонента, у которого теплота испарения меньше. [c.198]

    В системах, обладающих минимумом на диаграмме кипения, при повышении давления насыщенного пара в азеотропном растворе повышается концентрация того компонента, парциальная мольная теплота испарения которого больше. В системах же, обладающих максимумом на диаграмме кипения, в этом случае возрастает концентрация того компонента, парциальная мольная теплота испарения которого меньше. [c.177]

    Смещение состава азеотропов при изменении внещних условий определяется вторым законом Вревского если давление (температура) системы жидкость-пар имеет максимум, то при повышении температуры в азеотропной смеси возрастает концентрация того компонента, парциальная молярная теплота испарения которого больше, а если давление (температура) системы раствор-пар имеет минимум, то при повышении температуры в азеотропной смеси возрастает концентрация компонента с меньшей теплотой испарения. Этот закон был установлен Вревским строго термодинамически, но сформулирован в качественной форме. Он определяет возможность разделения азеотропных смесей изменением давления при перегонке. При этом точка азеотропа на диаграмме у — х перемещается и в принципе может совпасть, например, с правым верхним углом диаграммы. Это позволит разделить азеотропную смесь перегонкой. [c.107]


    Пример такого экстраполирования приведен на рис. V, 16. По мере возрастания концентрации компонента 1 в азеотропе при ка-ком-то значении давления мы войдем в интервал концентраций, близко примыкающий к нулю или единице (рис. V, 16, б). Азеотропы такого типа названы В. В. Свентославским почти тангенциальными азеотропами. Как только Xi= I, азеотроп станет тангенциальным, и кривая равновесия будет касаться диагонали в точке Х1= 1 (рис. V, 16,в). При дальнейшем изменении давления кривая равновесия в точке = 1 пересечет диагональ под конечным углом, а при концентрации x > 1 азеотропная точка будет двигаться, постепенно удаляясь от точки, соответствующей чистому легколетучему компоненту. Пока эта точка находится в интервале концентраций, близких к единице, кривая равновесия в общем случае на участке Хг<Ц будет проходить весьма близко от диагонали. Здесь мы имеем случай почти тангенциального зеотропа. Этот термин поясняет тот факт, что исследуемая смесь не азеотропна, однако при сравнительно небольшом изменении давления данный азеотроп обязательно появится. Случай, когда в результате дальнейшего изменения давления мнимая азеотропная точка имеет координаты Хг> 1, будет характеризовать обычную зеотропную смесь. [c.126]

    Для взаимно растворимых жидкостей с положительным отклонением равновесных парциальных давлений от линейного закона Рауля графики, аналогичные рис. 6.1, представлены на рис. 6.2. Из графика на рис. 6.2, а следует, что обш ее давление П имеет максимальное значение (точка А) при составе смеси, соответствующем концентрации х . При этой же концентрации летучего компонента в жидкой смеси зависимость температуры кипения смеси от состава имеет минимум (рис. 6.2, б). Следовательно, жидкость этого состава кипит при более низкой температуре, чем температура кипения даже летучего, т. е. низкокипящего компонента ( кип.л < кип. л)- Над азеотропной смесью состав равновесных паров такой же, что и состав жидкости, ибо кривая равновесного состава фаз (рис. 6.2, в) в точке с абсциссой х пересекает диагональ. [c.408]

    По законам Вревского в азеотропных растворах при наличии максимума на диаграмме кипения повышение давления насыщенного пара увеличивает концентрацию того компонента, парциальная мольная теплота испарения которого меньше в случае минимума повышается концентрация того компонента, парциальная мольная теплота которого больше. [c.120]

    Если давление (температура) системы имеет минимум (максимум), то при повышении температуры в азеотропном растворе возрастает концентрация того компонента, молярная парциальная теплота испарения которого меньше. [c.202]

    Эту формулировку второго закона Вревского следует считать наиболее совершенной. Следует отметить, что некоторые авторы, формулируя этот закон Вревского, допускают ошибки. Так, Юнг [14] пишет Вревский на основе наблюдений над составом азеотропных смесей спиртов, кислот и воды вывел следующую закономерность с возрастанием температуры увеличивается концентрация того компонента азеотропной смеси, который имеет большую молекулярную теплоту испарения, но только в том случае, если смесь имеет максимальное давление если же смесь имеет минимум давления, то при возрастании температуры упомянутая концентрация понижается . [c.31]

    Второй закон Вревского. Если давление (температура) системы раствор—пар имеет максимум (минимум), то при повышении температуры в азеотропной смеси возрастает концентрация того компонента, парциальная мольная теплота испарения которого больше. Если давление (температура) системы раствор—пар имеет минимум (максимум), то при повышении температуры в азеотропной смеси возрастает концентрация того компонента, парциальная мольная теплота испарения которого меньше. [c.64]

    Система вода — спирт относится к системам с положительным отклонением от линейной зависимости. Если взять систему с отрицательным отклонением от линейной зависимости, например соляную кислоту, то и здесь нельзя произвести разделение раствора на чистые компоненты. Хотя вода при атмосферном давлении кипит при 100° С, а хлористый водород при —85° С, раствор, содержащий 20,24° хлористого водорода, кипит при 108,5° С. Любой раствор, содержащий меньше 20,24% хлористого водорода, может быть разделен дистилляцией на постоянно кипящую смесь с содержанием 20,24% хлористого водорода и остаток из чистой воды, но ни растворы, более богатые хлористым водородом, ни чистый хлористый водород не могут быть выделены из него таким путем. Наоборот, любой раствор содержащий больше 20,24% хлористого водорода, может быть разделен на азеотропную смесь и чистый хлористый водород (если достигнута температура —85° С). При перегонке раствора первоначально выделяется один из компонентов (более летучий) в концентрированном виде. В дальнейшем концентрация выделяющегося компонента по отношению к первоначальному отгону уменьшается. Поэтому на практике процесс разделения смеси жидкости производится путем отбора дистиллята, кипящего в различных интервалах температур, в различные приемники. Этот процесс разделения получил название дробной или фракционной перегонки. Жидкость отобранная в один из приемников в определенном интервале температур, называется фракцией. [c.139]


    Это положение было сформулировано в выводах М. С. Вревского первый вывод при повышении температуры раствора заданного состава его пар обогащается тем компонентом, теплота испарения которого больше второй вывод если же компоненты образуют азеотропную смесь, то следует различать два случая при наличии максимума на кривой давления пара с повышением температуры азеотропной смеси в ней возрастает концентрация компонента, обладающего большей теплотой испарения при наличии минимума на кривой давления пара возрастает концентрация того компонента, у которого теплота испарения меньше, и третий вывод с изменением температуры (или давления) состав [c.266]

    В некоторых случаях разделения бинарных систем гомогенных в жидкой фазе азеотропов используются двухколонные схемы, давления в обеих колоннах которых подобраны таким образом, чтобы обеспечить выделение практически чистых компонентов. В этих случаях выбор давлений в колоннах определяется уже характером их влияния на азеотропную концентрацию. [c.180]

    Концентрация постоянно кипящей смеси различных гомогенных азеотропных растворов либо вовсе не меняется с изменением внешнего давления, либо сдвигается в сторону большего содержания одного из компонентов, либо, при достижении некоторого значения внешнего давления, азеотропия полностью исчезает, система уже не имеет экстремальных точек на кривой суммарного давления паров, и изобарные кривые кипения и конденсации приобретают монотонный характер. Последняя особенность гомоазеотропов часто облегчает их разделение. [c.323]

    В связи с тем, что азеотропы имеют при заданном давлении вполне определенный состав, появляется естественное ограничение в концентрации разделяющего агента по высоте колонны, в которой проводится процесс азеотропной ректификации. На сколько-нибудь значительной высоте колонны эта концентрация не может быть выше азеотропной, так как стремление перейти этот рубеж за счет увеличения подачи разделяющего агента неизбежно должно привести к концентрированию разделяющего агента в кубе. Это с очевидностью вытекает из того факта, что разделяющий агент всегда имеет меньшую относительную летучесть, чем образуемые им с компонентами заданной смеси положительные азеотропы. Таким образом, выбор веществ, пригодных в качестве разделяющих агентов, для азе- [c.269]

    Влияние температуры и давления на состав пара и состав азеотропной смеси. Законы Вревского. Состав пара, равновесного с жидким раствором заданной концентрации, зависит от температуры, при которой находится равновесная система, и от общего давления над раствором. Так, пар, находящийся в равновесии с жидкостью состава X (рис. 134) при температуре Т1, имеет состав Xi, а при температуре Гг — Х . Направление изменения состава пара над раствором заданной концентрации с изменением температуры и давления устанавливает первый закон Вревского при произвольном повышении температуры или давления пар, находящийся в равновесии с раствором заданного состава, обогащается тем компонентом, парциальная молярная теплота испарения которого больше. Этот закон справедлив для любых летучих смесей независимо от того, образуют или не образуют они азеотропные смеси. [c.393]

    Экстракционная перегонка представляет собой ректификацию, проводимую в присутствии селективного растворителя, который имеет более высокую температуру кипения, чем смесь углеводородов, подвергающаяся разделению этот растворитель прибавляют, чтобы изменить соотношение между относительными летучестями компонентов смеси. В смеси с селективным растворителем число степеней свободы на единицу больше, чем в азеотропной смеси, поскольку в первом случае фазовый состав определяется не только температурой и давлением, но и количеством растворителя. Это дает возможность поддерживать концентрацию растворителя при экстракционной перегонке на желаемом оптимальном уровне. [c.36]

    Из рис. VII. 5, а видно, что, в соответствии с первым законом Коновалова, пар и в этом случае обогащен по сравнению с жидкостью тем компонентом, добавление которого к раствору повышает общее давление пара (понижает температуру кипения). Например, добавление СЗг к ацетону повышает общее давление пара и понижает температуру кипения раствора вплоть до содержания СЗг, отвечающего экстремальной точке с. В этой области концентраций пар по сравнению с жидкостью обогащен сероуглеродом. Дальнейшее добавление С5г вызывает понижение общего давления пара (повышение точки кипения), поэтому пар в области концентраций между азеотропной точкой с и чистым сероуглеродом по сравнению с жидкостью обогащен ацетоном. К этому же выводу можно прийти, рассматривая добавление ацетона к сероуглероду. В азеотропной точке с состав жидкости равен составу равновесного с ней пара. [c.94]

    Кривая равновесия у—х показывает связь между концентрацией жидкости л и соответствующей концентрацией пара у, находящегося в состоянии равновесия с жидкостью. Следовательно, кривая равновесия является основой для расчета числа теоретических ступеней разделения по графическому методу Мак-Кэба и Тиле [771, который успешно и широко применяется благодаря своей простоте. На рис. 43 в ряду П1 представлены кривые равновесия для смесей различных типов. Для смесей взаимно нерастворимых компонентов кривая равновесия представляет собой прямую линию (тип 1), которая пересекает диагональ в одной точке, называемой азеотропной. В этой точке составы пара и жидкости одинаковы обогащение паров легколетучим компонентом при более высокой концентрации жидкости х уже невозможно напротив, в этой области концентраций пар содержит меньше легколетучего компонента, чем жидкость. При перегонке смесей взаимно нерастворимых компонентов (тип 1) или смесей только частично растворимых компонентов (тип 2) дистиллят имеет один и тот же состав в широком интервале изменения концентрации легколетучего компонента в кипящей жидкости и только в непосредственной близости от концентраций О и 100% появляются промежуточные составы дистиллята. Для смесей с максимумом на кривой давления паров при концентрации жидкости выше азеотропной (тип 3), а для смесей с минимумом на кривой давления паров при концентрации жидкости меньше азеотропной (тип 5) пары содержат меньше легколетучего компонента, чем исходная жидкость состава л . Для смесей типа 4 характерна форма кривой равновесия у —х, свойственная идеальным смесям, для которых у всегда больше х. [c.76]

    На фпг. 127, в видно, что кривая равновесия азеотропной смеси с минимумом давления и максимумом температуры кипения пересекает диагональ. Это значит, что при некотором составе раствора образующийся пар имеет ту же концентрацию низкокипящего компонента, как и кипящая жидкость. Отсюда следует, что разделение азеотропной смеси одной лишь фракционированной перегонкой невозможно. Только изменением общего давления системы удается сместить азеотропную точку в сторону более высоких или более низких концентраций. Этим, например, пользуются в производстве азотной кислоты. При помощи вакуумной перегонки водного раствора азотной кислоты смещают азеотропи-ческую точку вправо, этим значительно повышают концентрацию азотной кислоты по сравнению с тем, что дает перегонка при атмосферном давлении. [c.229]

    Твор —пар имеет максимум, то при повышении температуры в азеотропной смеси возрастает концентрация того компонента, для которого больше дифференциальная теплота парообразования-, если же давление (температура) системы раствор — пар имеет минимум, то при повышении температуры в азеотропной смеси возрастает концентрация того компонента, для которого дифференциальная теплота. парообразования меньше. Этот закон справедлив для состояний двойных систем, далеких от критических. Третий закон Вревского устанавливает связь между смещениями состава системы, имеющей экстремум давления и температуры, и свойством фазы, устойчивой выше температуры сосуществования, при изменении Р я Т-. при изменении температуры (давления) раствора, у которого кривая давления насьщен-ного пара имеет максимум, состав пара раствора и состав азеотропной смеси изменяются в одном и том же направлении-, при наличии минимума на кривой давления насьщен-ного пара эти составы изменяются в противоположных направлениях. [c.290]

    Третий закон Вревского характеризует соотношение между направлениями смещения состава азеотропа и состава его пара при повышении р и Т. Рассматривая положения, обосновывающие первый закон Вревского, мы закрепили состав жидкой фазы = onst] и наблюдали изменение состава сосуществующего с ней пара при изменении Тир. Теперь в качестве постоянной величины закрепим мол. долю легколетучего компонента в растворе азеотропного состава при заданных первоначально давлении и температуре. Тогда при повышении их состав жидкости уже не будет отвечать экстремуму Т и р. И, следовательно, пар нового состава будет отличаться от состава раствора. В то же время концентрация легколетучего компонента в азеотропе также приобретает новое значение. Сопоставим теперь выражения (V. 186) и (V. 192), а также (V. 187) и (V. 193). Правые части этих равенств одинаковы и следовательно  [c.277]

    Состав системы выражают массовой, объемной или молярной долей компонентов, при этом предпочтение отдают такому способу выражения концентрации, при к-ром данное св-во является линейной (аддитивной) ф-цией состава Так, для идеальных газовых смесей и жидких р-ров плотность является линейной ф-цией состава при выражении последнего в объемных долях компонентов При неаддитивности св-ва на кривой, изображающей его зависимость от состава, могут появиться экстремумы и точки перегиба Признаком хим взаимод между компонентами системы с образованием устойчивого (не диссоциирующего) хим соед является появление на кривой св-во-состав сингулярной точки, в к-рой первая производная св-ва по составу терпит разрыв непрерывности Системы с образованием частично диссоциирующих соед не имеют сингулярных точек на кривых состав-св-во Экстремумы на кривых состав-св-во могут появиться и в отсутствие хим взаимод между компонентами, в особенности если св-ва компонентов близки друг к другу Пример азеотропные точки на кривых т-ра кипения-состав при постоянном давлении (см Азеотропные смеси) [c.32]

    По правилу Вревского, при повышении давления в азеотропной смеси с минимумом температуры кипения увеличиваежя концентрация компонента с большей мольной теплотой испарения, а в смеси с максимумом температуры кипения — концентрация компонента с меньшей мольной теплотой испарения. [c.431]

    Bpee Koro. 1. Закон, согласно которому при повыщении температуры раствора его пар обогащается тем компонентом, парциальная мольная теплота испарения которого больше. 2. Закон, согласно которому если на кривой зависимости общего давления пара от состава раствора имеется максимум, то при повышении температуры в азеотропной смеси возрастает концентрация того компонента, парциальная мольная теплота испарения которого больше если на этой кривой имеется минимум, то при повышении температуры в азеотропной смеси возрастает концентрация того компонента, парциальная мольная теплота испарения которого меньше. 3. Закон, согласно которому если на кривой зависимости общего давления пара от состава раствора имеется максимум, то при изменении температуры состав пара, находящегося в равновесии с раствором постоянного состава, и состав азеотропной смеси изменяются в одном направлении если на этой кривой имеется минимум, то соответствующие составы изменяются в противоположных направлениях. [c.145]

    Наличие азеотропии не позволяет обезводить ректификацией при атмосферном давлении разбавленную муравьиную кислоту, но не мешает разд е-лить ректификацией кислоту, концентрация которой превышает концентрацию азеотропной смеси, и получить при этом высококонцентрированную муравьиную кислоту и азеотропную смесь. Данную операцию можно рассматривать, как ректификацию бинарной системы муравьиная кислота — аз еотропная смесь, т. е. азеотропную смесь муравьиной кислоты с водой можно принять за один компонент. Легко летучим компонентом в данном случае является избыточная (сверх необходимой для образования азеотропной смеси) муравьиная кислота. [c.169]

    Известно, что составы азеотропов зависят от условий существования системы, в частности от давления. При изменении давления в многокомпонентных системах происходит изменение положения границ областей ректификации. На основе этого явления разработан принцип перераспределения полей концентрации между областями ректификации [29], который может использоваться для разделения многокомпонентных азеотропных смесей ректификацией без введения каких-либо вспомогательных веществ. Это же явление, как следует из рассмотренных примеров I и III, может использоваться для увеличения предельнд возможных степеней превращений реагентов, образующих азеотропные смеси, в реакционно-ректификационном процессе. В самом деле, если, например, при повышенном (пониженном), по сравнению с атмосферным, рабочем давлении в аппарате состав азеотропа (рис, 40,6) будет соответствовать более высокому содержанию компонента С, то линия предельных составов псевдоисходных смесей ВМ (рис. 40, в) займет положение, соответствующее более высокой предельной конверсии компонента А, [c.208]

    Способность ограниченно смешивающихся жидкостей образовывать гетероазеотропы используется для разделения азеотропных смесей в системах с неограниченной взаимной растворимостью компонентов. Так, азеотропная-смесь в системе пиридин — вода, содержащая 57% пиридина и кипящая при 365 К, методом перегонки не может быть разделена на чистые компоненты. Однако если к такой азеотропной смеси добавить бензол, который образует с водой гетероазеотроп, кипящий при более низкой температуре (342 К), то при перегонке водных растворов пиридина в присутствии бензола можно получить чистый пиридин, а вода вместе с бензолом в виде гетероазе-отропа перейдет в дистиллят. Диаграмма на рис. 139 отвечает системе, в которой гетероазеотроп не образуется. В такой системе во всем интервале концентраций пар богаче жидкости компонентом Б, имеющим более низкую температуру кипения при заданном давлении. Такие системы характеризуются тем, что состав пара (точка О), равновесного с жидкими растворами (точки С и D), не является промежуточным между составами жидких растворов. Кроме того, температура равновесной трехфазной системы не будет самой низкой температурой, при которой существует равновесие пар—жидкость. Систему с ограниченной взаимной растворимостью компонентов второго типа перегонкой можно разделить на два чистых компонента. Примерами систем данного типа могут служить системы вода — фенол, гексан — анилин, вода — никотин, бензол — ацетамид, метанол — тетраэтил-силан и др. [c.398]

    Если кривая равновесия, начиная с нулевой концентрации, проходит ниже диагонали, а после пересечения с диагональю выше нее, то это означает, что данная смесь является азеотропной с максимумом на изобарной кривой кипения или минимумом на изотермической кривой давления паров. При этом точка кипения азеотропной смеси лежит выше точек кипения обоих чистых компонентов. В качестве примера можно привести смесь азотная кислота — вода (см. рис. 29 и). Температура кипения Крш азотной кислоты 86,0° С, воды 100,0° С, азеотропа, содержащего 37,81% (мол.) кислоты, 122° С. Для этой системы Флатт [145] приводит метод графического расчета рабочих условий ректификации. [c.108]


Смотреть страницы где упоминается термин Давление и концентрация азеотропных компонентов: [c.201]    [c.201]    [c.238]    [c.276]    [c.117]    [c.43]    [c.43]    [c.431]    [c.26]    [c.328]    [c.62]    [c.26]    [c.26]    [c.26]    [c.201]    [c.326]   
Азеотропия и полиазеотропия (1968) -- [ c.188 , c.189 ]




ПОИСК





Смотрите так же термины и статьи:

Концентрация компонента



© 2025 chem21.info Реклама на сайте