Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химический в гомогенных системах

    Влияние различных факторов. На скорость химической реакции могут влиять различные факторы. В гомогенных системах такими факторами являются температура, давление и состав в гетерогенных системах проблема усложняется. Реагирующее вещество может 22 [c.22]

    Рассмотрим гомогенные системы, в которых реагенты находятся в одной фазе (газовой или жидкой) и в которых диффузионные процессы не оказывают влияния на скорость превращения. В таких случаях скорость превращения определяется скоростью химической реакции. По -му компоненту продуктов в расчете на [c.206]


    Важно отметить, что в принципе скорость превращения не идентична скорости химической реакции. Последняя определяется только химической кинетикой системы, т. е. представляет собой скорость превращения, определенную в таких условиях, когда отсутствует влияние эффектов физического транспорта реагентов к реакционным центрам и продуктов реакции от них. Такие эффекты не влияют на химический процесс в случае гомогенных реакций, проводимых в потоке, когда реагенты хорошо перемешиваются, а также гетерогенных реакций, скорость которых мала по сравнению со скоростью потенциального физического транспорта. [c.30]

    Следует подчеркнуть, что принцип Ле Шателье применим не только к однородным, гомогенным системам, но и к неоднородным, гетерогенным системам. При этом необходимо иметь в виду, что закон действующих масс применим к гетерогенным системам лишь с определенными допущениями. Область его применения ограничена лишь однородными частями равновесий системы. Равновесие же между неоднородными частями системы не подчиняется закону действующих масс. Химическое равновесие в гетерогенных системах демонстрируется в опытах 48 и 49. В опыте 50 имитируются процессы, протекающие в природе при образовании соляных месторождений. [c.102]

    Вода — самое распространенное в природе химическое соединение. Она покрывает 70,8% земной поверхности и занимает примерно 1/800 объема Земли. Содержание воды в литосфере, по современным оценкам, превышает 10 км , т. е. сопоставимо с ее количеством в морях и океанах. Вода присутствует в горных породах в свободном или связанном виде. Принято выделять несколько разновидностей воды, различающихся по степени связанности от гравитационной воды, способной перемещаться под действием силы тяжести или напорного градиента, до химически связанной конституционной воды, входящей в кристаллическую решетку минералов, как правило, в виде гидроксильных групп. Содержание свободной воды может достигать десятков процентов в пористых и трещиноватых породах верхних горизонтов земной коры, резко уменьшаясь с глубиной, хотя не всегда монотонно. Распределение воды по горизонтали также весьма неоднородно на всех глубинах встречаются участки различной степени обводненности, которую, однако, нигде нельзя считать нулевой. Физическое состояние воды зависит от давления, увеличение которого составляет примерно 100 МПа на каждые 3 км глубины, и температуры, определяемой геотермическим градиентом (от 5—10 до 200 град/км). Зона жидкой воды (а также льда в высоких широтах на глубине до 1 км) сменяется областью надкритического флюида при температурах 400—450°С выше 1100°С молекулы воды диссоциированы. Многие другие свойства воды также заметно изменяются с глубиной. Так, ионное произведение воды в нижней части земной коры оказывается повышенным на шесть порядков. Возрастает при этом и способность воды образовывать гомогенные системы с компонентами вмещающих пород, находящихся в твердом или частично расплавленном состоянии. Таким образом, можно сказать, что все природные жидкие и надкритические фазы представляют собой многокомпонентные смеси, в кото- [c.83]


    Определение химического равновесия в гомогенных системах (жидкая фаза) [c.252]

    Нернст (1906) предположил, что lim = lim = О, сформулировав таким путем третий принцип термодинамики, который можно также выразить следующим образом А и U равны не только нри абсолютном нуле, но и вблизи абсолютного нуля . По аналогии с другими принципами термодинамики постулат Нернста означает, что невозможно построить такую тепловую машину, которая позволила бы охладить тело до абсолютного нуля. Самая общая формулировка была предложена Планком и гласит, что энтропия конденсированной химически гомогенной системы при абсолютном нуле также равна нулю [c.407]

    Кинетика химических реакций в гомогенных системах [c.206]

    Сопротивление в уравнении (1Х-1) для данного процесса также будет характеристической величиной. В случае диффузионного массообмена образуется пленка, через которую и происходит диффузия следовательно, сопротивление будет пропорционально толщине этой пленки. При теплопередаче величина сопротивления пропорциональна толщине стенки, разделяющей. две среды. В случае химической реакции в гомогенной системе с сопротивлением связана энергия активации процесса и т. д. [c.348]

    Все это привело к тому, что расчетные методы масштабирования эффективно используются лишь для проектирования относительно простых и хорошо изученных единичных процессов, например теплообмена, некоторых массообменных процессов, простых химических превращений в гомогенных системах и т. п. [c.442]

    Написать выражение скорости химической реакции, проте-, кающей в гомогенной системе по уравнению [c.86]

    Гомогенной называется такая система, которая на всем своем протяжении (во всем объеме) не имеет поверхностей раздела и в каждой своей части обладает идентичными физическими свойствами и химическим составом. Примером гомогенной системы может быть чистая нефть, находящаяся в дегидраторе установки, или безводное дизельное топливо в змеевике холодильника. [c.133]

    В однофазной системе протекают гомогенные химические реакции. При замкнутом объеме реактора (см. табл. 111-1) в ходе процесса не вводятся реагирующие вещества и не выводятся продукты реакции. Будем считать, что в гомогенно системе концентрация одинакова в любом элементарном объеме. [c.92]

    В гомогенных системах фактор частоты для мономолекулярных реакций равен частоте колебаний вдоль пути реакции, а для реакций взаимодействия между двумя молекулами (или большим их числом) — частоте столкновений. Столкновение между молекулами реагирующих веществ, обладающими энергией, достаточной для образования активированного комплекса, может, однако, и не привести к химическому превращению, если при столкновении не выполнены некоторые дополнительные условия, например, определенная взаимная ориентация сталкивающихся молекул. Эти ограничений и учитываются в уравнении (1.2) энтропийным фактором. [c.11]

    Сегрегация и ее воздействие на химические превращения и процессы переноса особенно проявляются в системах с повышенной вязкостью, а также там, где реакции протекают с высокими скоростями. Образование молекулярных агрегатов характерно для многих процессов получения высокомолекулярных соединений. Так, сложной совокупностью физико-химических явлений отличается гетерофазная полимеризация, при которой образующийся полимер выделяется из первоначально гомогенной системы в виде новой конденсированной фазы с соответствующими морфологическими особенностями и возможным протеканием элементарных реакций в нескольких фазах [12, 13]. Примером может служить полимеризация винилхлорида, которая протекает в три стадии вначале процесс идет в гомогенной мономерной фазе на второй (наиболее продолжительной) стадии полимеризация протекает в двух фазах — мономерной и полимер-мономерной, а на третьей стадии — вновь в одной фазе (полимер-мономерной). При этом процесс сопровождается потоками массы и тепла в глобулярных образованиях (полимерных частицах), размеры которых увеличиваются в ходе реакции за счет поступления реагентов из сплошной мономерной фазы. [c.26]

    Для однородной по химическому составу гомогенной системы ее термодинамические функции зависят от Р, V, Т, а также <т — поверхностного натяжения, В — напряженности магнитного поля, g — силы тяжести, д — заряда и — напряженности электрического поля. Главное уравнение термодинамики можно представить для этой системы в таком виде  [c.144]

    Таким образом определено изменение энтропии для гомогенной системы также в отсутствие химического равновесия. [c.75]

    В главе IV химические реакции не рассматривались. Однако химическое равновесие является особым случаем внутреннего равновесия, так как оно устанавливается также в гомогенной системе. Так как в 27 для каждой фазы предполагалось существование внутреннего равновесия, то внутри фаз можно допустить протекание химических реакций, если предположить полное химическое равновесие и ввести в условия равновесия только числа молей независимых компонентов в смысле определения 2. Ранее полученные результаты останутся тогда неизменными, но, естественно, не будут содержать сведений об условиях химического равновесия. Реакции между фазами (гетерогенные реакции) можно допустить, предполагая равновесие и ограничиваясь независимыми компонентами  [c.161]


    В этом параграфе рассмотрим химические реакции, протекающие внутри фазы (соответственно гомогенной системы). [c.165]

    В предыдущих рассуждениях был использован второй закон термодинамики (за некоторыми исключениями, например, в 37) только в виде высказывания, что термодинамические потенциалы в состоянии равновесия принимают стационарное значение. Дальнейшее высказывание, что это стационарное значение является минимумом, составляет, как уже было кратко отмечено в 18 и 23, содержание условий стабильности. Задача данной главы полностью аналогична той, которая обсуждалась в гл. IV и V для условий равновесия. Теперь речь идет о том, чтобы из общей формулировки условий стабильности в 18 и 23 при помощи фундаментального уравнения вывести в явном виде следствия. Этим ограничивается задача. Формально нужно теперь исследовать вариации термодинамических потенциалов более высокого порядка. В рамках термодинамики для четкой трактовки рассматривают, как и в случае условий равновесия, только такие возможные возмущения, которые можно выразить через величины состояния. Это ограничение допускает для гомогенной системы при условиях равновесия лишь обсуждение равновесий, которые можно представить через внутренние параметры. Для условий стабильности гомогенной системы даже при исключении внутреннего равновесия постановка вопроса оказывается не тривиальной. Фактически, как будет видно, остальные проблемы стабильности, если отвлечься от химического равновесия, можно свести к проблеме стабильности гомогенной фазы. Вопрос стабильности химического равновесия является сравнительно простым, и позднее можно будет удовлетвориться некого- [c.198]

    Мало изучены коллоидно-химические процессы образования эмульсий в многокомпонентных нефтяных системах с ограниченно растворяющимися компонентами. При исследовапии модельных бинарных систем обнаружено, что самопроизвольно образующиеся обратимые эмульсии существуют в определенном интервале концентраций и температур, вне которого они разрушаются с образованием двух макрофаз или являются гомогенной системой [138]. Дистиллятное нефтяное сырье, подвергаемое очистке селективными растворителями, в предкритической области следует рассматривать как жидкостную эмульсию, нарушение агрегативной устой" чивости —разделение на рафинатный и экстрактный растворы— происходит при критической температуре. [c.34]

    Конденсационный путь образования дисперсных систем связан с выделением новой фазы из гомогенной системы, находящейся в ме-тастабильном состоянии, например,кристаллизация из пересыщенного раствора, конденсация пересыщенного пара и т. п. Этот процесс протекает в том случае, если химический потенциал вещества в новой (стабильной) фазе меньше, чем в старой, метастабильной. Однако этот выгодный в конечном счете процесс проходит через стадию, требующую затраты работы, - стадию образования зародышей новой фазы, отделенных от старой фазы поверхностью раздела. Условия для возникновения зародышей новой фазы возникают в метастабильной системе в местах, где образуются местные пересыщения - флуктуации плотности (концентрации) достаточной величины. Радиус равновесного зародыша новой фазы связан со степенью пересыщения. [c.39]

    Многочисленные опыты показывают, что при повышении температуры скорость большинства химических реакций существенно увеличивается, причем для реакций в гомогенных системах при нагревании на каждые десять градусов скорость реакции возрастает в [c.56]

    Как дисперсную систему — жидкостную эмульсию — следует рассматривать в предкритической области дистиллятное нефтяное сырье, подвергаемое очистке селективными растворителями. При критической температуре происходит нарушение агрегатной устойчивости системы и разделение ее на рафинатный и экстрактный растворы. Большое значение приобретают исследования коллоидно-химических процессов образования эмульсий в многокомпонентных нефтяных системах с ограниченно растворяющимися компонентами. В модельных бинарных системах самопроизвольно образуются обратимые эмульсии, существующие в определенном интервале концентраций и температур, вне которого они разрушаются с образованием двух макрофаз или являются гомогенной системой [9]. [c.34]

    Химическое превращение в гомогенной системе называют гомогенной химической реакцией (напрнмер, реакции в растворах, расплавах, газах). Химическое превращение в гетерогенной системе называют гетерогенной химической реакцией (например, образование или растворение осадков, полимеризация, адсорбционные и многие каталитические процессы). [c.154]

    Расчет 3 для однородной гомогенной системы при наличии химических превращений [c.298]

    Гольмий — см. Лантаниды Гомберга — Бахманна — Гея реакция 1—981 Гомо-(приставка) 1—982 Гомогенизация 5—82 Гомсгенное равновесие — см. Равновесие химическое Гомогенные системы 1—982, 868 Гомогентизиновая кислота 1—982 Гомолитические реакции 1—983 Гомологические ряды 1—984 Гомосахариды 5—301 Гомоцистеин 3—202 Гомоцистеиндесульфгидраза 1 —1070 Гонадотропные гормоны 1—987 Гопкалит 1—988 Гордеин 4—347 Горение 1—988 [c.559]

    Углеводородные системы могут быть гомо- и гетерогенньпии. В гомогенной системе все ее части имеют одинаковые физические и химические свойства. Составляющие гомогенной системы (называемые компонентами) размазаны по всему пространству и взаимодействуют на молекулярном уровне. Для гетерогенной системы физические и химические свойства в разных точках различны. Гетерогенные системы состоят из фаз. Фаза-это часть системы, которая является гомогенной и отделена от других фаз отчетливыми границами. Смесь воды, нефти и газа в пласте-типичный пример гетерогенной среды. [c.252]

    В. И. Касаточкина, который рассматривает графитацию как гомогенный процесс. Положения о фазовых состояниях гомогенной системы были развиты В. А. Каргиным и Г. Л. Слонимским [96] по отношению к полимерам. Под фазой они понимают гомогенную систему, находящуюся в термодинамическом равновесии. Гомогенная система, в которой нет поверхностей раздела между ее частями, может быть химически неоднородной. Понятие фаза не отождествляется с понятием агрегатное состояние . Так, твердые стеклообразные тела термодинамически являются жидкими фазами к твердым фазам относятся только кристаллические тела. Гомогенность понимается без учета неоднородностей, обусловленных молекулярным строением тела, и аморфный полимер считается гомогенным телом, а микрокристаллический полимер, в котором имеются неупорядоченные области, — гетерогенным. При этом авторы утверждают, что внутренние напряжения в полимере отражаются на форме кристаллов и ограничивают их рост. Пластинчатые и игольчатые формы вызывают меньше напряжений и потому быстрее растут. Развивающаяся кристаллизация приводит к минимуму внутренних напряжений и к наилучшим условиям для их релаксации, т. е. к уменьшению внутренней энергии. [c.203]

    Практикум содержит работы iio основным paJдeлaм фнничсско химии. В пособии рассмотрены методы физико-химических измерении, обработки экспериментальных данных и способы их расчетг)в. Большое внимание уделено строению вещесто, первому началу термодинамики, фазовому равновесию 13 одно-, двух- и многокомпонентных системах, химическому равновесию в гомогенных системах и др. Интерес представляют работы по молекулярной спектроскопии и кинетике гомогенных и гетерогенных [)еакций. Изменены работы, связанные с применением термохимических, рентгеноструктурных и некоторых электрохимических методов исследования. Введены работы по расчету сумм состояния и термодинамических функций. [c.2]

    Термином фаза обозначается совокупность всех гомогенных частей системы, одинаковых по составу и по, всем физическим и химическим свойствам (не зависящим от количества вещества) и отграниченных от других частей системы некоторой поверхностью (поверхностью раздела). Так, в системе, состоящей из жидкой воды и льда, имею тся две фазы — жидкая вода и лед (независимо от того, находится ли последний в виде одного куска или нескольких). Фазы, состоящие из одного какого-нибудь химически индивидуального вещества, называют простыми (их называют также чистыми), я фазы, содержащие два индивидуальных вещества или больше, — смешанными фазами. Любая гомогенная система предст.авляет собой одну фазу. Гетерогенные же системы содержат не менее двух фаз. [c.179]

    Если система включает несколько подсистем с различными свойствами, то ее называют гетерогенной. Гомогенная система однофазна, гетерогенная — многофазна. Условились под фазами понимать однородные части системы, отделенные друг от друга поверхностями раздела и обладающие одинаковым химическим составом, физическими и термодинамическими свойствами. Однородной называют систему, содержащую молекулы или атомы одного и того же сорта (К- Б. Толпыго, К- А. Путилов), или одну фазу. [c.7]

    На этой диаграмме можно выделить следующие области. Область выше кривых ликвидуса ab и d определяет жидкий расплав веществ Л и В (/=2—1 + 1 = 2). Это гомогенная система. Точка Ь определяет температуру инкогруэнтно плавящегося твердого химического соединения АВ. Если бы химическое соединение было устойчивым при плавлении твердого тела, то кривая Ьс имела бы продолжение с максимумом в точке е (конгруэнтная точка), которая не может быть достигнута в такой смеси веществ из-за разложения химического соединения уже при плавлении твердого тела. [c.183]

    Подробная математическая модель химических реакций позволила обнаружить существование достаточно четко выраженного оптимума для перечисленных переменных. Например, если желательно снизить расход хлористого алюминия до минимума, можно использовать кинетическую модель так, чтобы показать влияние каждой переменной на концентрацию А1С1з. Чтобы сравнение было эффективным, его следует проводить при одном и том же качестве алкилата, налример при одинаковой концентрации тетраэтил-бензолов. Нужно вспомнить, что в гомогенной системе количество высших полиэтилбензолов строго ограничено из-за их основности. [c.277]

    В химической технологии ширеко распространены и имеют важное значение процессы массопередачи, характеризуемые пере-хоцом одного или нескольких веществ из одной фазы в другую. Путем переноса вдного или более компонентов из фазы в фазу можно разделять как гетерогенные, так и гомогенные системы (газовые смеси, растворы жидкостей и др.), причем наиболее часто процессы массопередачи используют для разделения ромогенных систем. [c.382]

    Исследоваиия каталитической гидрогенизации в гомогенных жидких растворах приобрели в настоящее время важное значение, так как получаемые результаты освещают с новой стороны механизм каталитической активации молекулярного водорода. Другими словами, подобные гомогенные катализаторы представляют интерес пе только потому, что они позволяют открыть или осуществить на практике новые или трудно выполнимые реакции, но также благодаря тем возможностям, которые представ-лянэтся этими системами для выяснения химизма катализа. Как было отмечено выше, поч1и все катализаторы гидрирования являются твердыми телами. Однако природа этих твердых те т очень мало известна и еще в меньшей стенени известны их поверхностные свойства. В противоположность этому природа молекулярных частиц, находящихся в растворе, сравнительно хо-poHJo установлена. Поэтому весьма вероятно, что со временем удастся найти связь между особенностями каталитического гидрирования н гомогенных системах и известными химическими свойствами участвующих в них молекул, ионов или комплексов. [c.177]

    Установление возможности самоорганизации в сильнонеравновесных системах имеет важнейшее значение для химии, особенно для катализа и биологии. Это связано с тем, что функционирующие катализаторы, как гетерогенные, так и гомогенные, а также живые организмы представляют собой весьма неравновесные химически реакционноспособные системы, в которых могут существовать большие фадиенты концентраций химических веществ, а иногда также и температуры, давления, электрического потенциала и т.п. [c.350]


Смотреть страницы где упоминается термин Химический в гомогенных системах: [c.388]    [c.103]    [c.53]    [c.209]   
Учебник физической химии (1952) -- [ c.149 ]




ПОИСК





Смотрите так же термины и статьи:

Система гомогенная



© 2025 chem21.info Реклама на сайте