Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энтропия при равновесии

    Из сказанного следует, что всякий самопроизвольный (следовательно, необратимый) процесс в изолированной системе связан с увеличением энтропии. Равновесие характеризуется максимумом энтропии. [c.66]

    Н = , — 1 энергия Гиббса АО = —RT nK, энтропия равновесия А5° время релаксации X, за которое система приближается к состоянию равновесия в е раз, т. е. время, за которое (С — С )/ (С/ — С ) е. [c.41]


    Так как приращение энтропии должно быть положительным, сродство имеет тот же знак, что и скорость реакции, и обращается вместе с ней в нуль при равновесии. [c.60]

    Всякое изменение состояния системы молекул (среднестатистическая функция распределения по уровням энергии) сопровождается стремлением к новому состоянию равновесия (релаксация). Поглощение зв)т<а всегда сопровождается релаксационными процессами, которые могут остановиться в состоянии неустойчивого равновесия (метастабильное состояние). Нахождение вещества в этом состоянии делает его весьма чувствительным к разнообразным трансформациям. В работе [443] показано, что в метастабильном состоянии субстанция склонна к быстрым химическим изменениям. В этой же работе приводятся сведения, что существует прямая пропорциональная связь между константой скорости химической реакции, энергией и энтропией активации и временем релаксации. [c.49]

    Константы равновесия для нефти, газа, а также бинарных и тройных систем, составленных из углеводородных компонентов, более изучены, чем значения теплоемкостей, энтальпии и энтропии и термодинамических потенциалов для газонефтяных систем. [c.92]

    Здесь первый член правой части равен нулю, что следует из условия теплового равновесия (9-8). Однако условием полного равновесия является требование, чтобы при возможном перемещении dV приращение энтропии было равно нулю [c.126]

    Соответственно этому, условием равновесия является требование, чтобы при возможном перемещении dX изменение энтропии было равно нулю  [c.127]

    Как физическое равновесие какой-либо системы в любом случае характеризует экстремум соответственно выбранной функции (энтропии, свободной энтальпии), так и здесь можно сказать, что экстремум целевой функции (максимальная прибыль, минимальная себестоимость) является показателем экономического равновесия . Это — не формальная аналогия. Если физическая система не находится в состоянии равновесия, то начинаются самопроизвольные изменения в направлении равновесия. Если элемент процесса не находится в экономическом равновесии, то также возникают изменения, стремящиеся привести его к равновесным условиям. Это доказывает нам закон снижения себестоимости. [c.321]

    Использование квантовомеханической модели расширило детализированную теорию [см. ур. (XI.8.3) и (XI.8.За)] так,что оказалось возможным рассматривать влияние структурных изменений на внутренние частоты. В уравнении (XI.8.3) V представляет собой средневзвешенную величину внутрен них частот частицы, которая имеет конфигурацию переходного комплекса, а представляет собой константу равновесия между этим переходным состоянием и нормальными молекулами. Величины/ , и 8 являются соответственно стандартным изменением свободной энергии, энтальпии и энтропии при образовании переходного комплекса. В уравнении (XI.8.За) выражение для скорости имеет форму, удобную для статистического расчета. [c.225]


    Возможно, одной из самых поразительных черт бимолекулярных реакций присоединения, приведенных в табл. XII.8, является крайне резкое изменение их стерических множителей, приблизительно от 0,5 для реакции рекомбинации радикалов СНз До 10 для димеризации циклонентадиенов и других реакций присоединения (типа Дильса — Альдера). Согласно простейшим теориям равновесия, мы должны были бы ожидать малые стерические множители для реакций больших молекул. Удивительным является то, что стерические множители для реакций N02, СНз, СаР/, и бутадиена (с цианогенными соединениями) должны быть действительно большими (больше 10 ). Эти большие величины должны быть отнесены за счет квантовых эффектов (т. е. они не могут быть объяснены на основе классических осцилляторов), которые способствуют аномальному увеличению энтропии активированного комплекса или комплекса переходного состояния. [c.267]

    ЗАВИСИМОСТЬ МЕЖДУ ЗАРЯДАМИ ИОНОВ И ЭНТРОПИЕЙ ДЛЯ НЕКОТОРЫХ ионных РАВНОВЕСИЙ В ВОДЕ ПРИ 25° [c.463]

    Для сравнения в табл. XV.8 перечислены изменения энтропии для ряда ионных равновесий в воде при 25°. Несмотря на то, что в таблицу включены частицы с ковалентными связями, для которых возможность применения электростатической модели весьма сомнительна, общее изменение энтропии симбатно изменению, соответствующему уравнению (XV.12.2). Величины АР° и АЯ° дают гораздо худшее совпадение. [c.464]

    Работа на этом этапе исследований охватывает также измерения и вычисления физико-химических величин (характеризующих исходные вещества, конечные продукты и реакционные системы), необходимых для проектирования процесса. Это термохимические, термодинамические и термокинетические величины, такие как теплота образования, теплоемкость, энтальпия и энтропия, кинетические константы, плотность, вязкость, коэффициенты теплопроводности и диффузии и т. п. Необходимо располагать значениями указанных величин не только для чистых (индивидуальных) реагентов, но и для их смесей, а также изучить равновесие в многофазных системах, участвующих в процессе. [c.9]

    Константа равновесия К может быть связана обычными термодинамическими зависимостями с энтальпией и энтропией образования активного комплекса  [c.220]

    Одной из основных идей современной физики и химии является понятие о квантованных состояниях нли квантованных энергетических уровнях. Большое значение этих представлений для химии обусловлено тем, что все равновесные свойства газов могут быть вычислены на основании данных об энергетических уровнях их молекул. К этим свойствам относятся термодинамические величины теплоемкости, энтропии, свободные энергии образования и константы равновесия химических реакций. Во многих случаях величины, вычисленные таким образом, точнее, чем найденные экспериментально в других случаях вычисления являются единственно доступным в настоящее время методом получения необходимых данных, так как проведение соответствующих экспериментальных измерений практически невозможно. [c.292]

    По теплотам гидрогенизации и константам равновесия реакций изомеризации получены следующие разности энтропий для изомеров трех пентенов [19, 43]  [c.103]

    Константы равновесия реакций изомеризации парафинов С4—Се, энтальпия изомеризации и изменение энтропии изомеризации, вычисленные на основании спектроскопических данных и данных о свободных энергиях, приведены в табл. 1.3, а равновесные составы смесей изомеров — в табл. 1.4. При расчетах констант равновесия реакции изомеризации используется разница в свободных энергиях изомеров ЛС°=Д//°-Л5 7- [c.13]

    Уравнение (28) является математическим выражением постулата Гиббса изолированная система, объем и масса которой постоянны, находится в устойчивом равновесии, если при заданной энергии ее энтропия достигла максимального значения. [c.94]

    Так как по третьему закону термодинамики энтропия любого химически и физически чистого кристаллического вещества, находящегося в полном внутреннем равновесии, при абсолютном нуле равна нулю, что вполне доказано экспериментально для большинства исследованных неорганических и органических соединений (подробности см. в главе III), то легко показать, что уравнение (49) может быть переписано в следующем виде [c.103]

    Аналогичные соотношения автором предложены для вычисления свободной энергии (—Аг ) теплот образования (—ДЯ ), констант химического равновесия — Кр, энтропии [c.226]

    Для термодинамического вычисления равновесия, выполняемого при исследовании, необходимо знать значение теплоты сгорания с максимальной точностью, так как теплота образования НгО и СОг велика по сравнению с теплотой образования углеводородов. Необходимо также знать с особой точностью значения теплоты для вычисления свободной энергии и энтропии. Необходимо также с особой тщательностью выбирать значения из литературы, так как многие определения были проведены до появления современного лабораторного оборудования наиболее падежные данные для чистых углеводородов приведены Россини, сотрудничавшим в Американском нефтяном институте [295]. [c.201]


    Расчет константы равновесия (по уравнению ЛО = —RT 1п К) проводят по величинам стандартных изобарных потенциалов ДО реагентов или по стандартным значениям энтальпии и энтропии.  [c.14]

    Исследуя энтропию, очевидно, можно предсказывать направление процесса. Если в изолированной системе для какого-либо процесса энтропия возрастает, то процесс возможен (может протекать самопроизвольно) если энтропия изолированной системы согласно расчету должна убывать, то процесс невозможен (отрицателен). При постоянстве энтропии—процесс равновесен, система бесконечно близка к равновесию. [c.90]

    В изолированной системе процессы прекратятся, очевидно, тогда, когда энтропия системы достигнет максимального значения, возможного для данной системы при постоянстве некоторых ее параметров, а именно при постоянстве внутренней энергии U и объема v (условия изолированности системы). Дальнейшее изменение состояния системы должно было бы вызвать уменьшение энтропии, что в изолированной системе невозможно. Таким образом, признаком равновесия изолированной системы является максимальное значение энтропии при постоянных внутренней энергии и объеме системы (если нет других видов работы, кроме работы расширения). Следовательно, при равновесии должны соблюдаться условия  [c.90]

    Постулат Планка используется при термодинамическом исследовании химических процессов для вычисления абсолютных значений энтропий абсолютных энтропий) химических соединений—величин, которые имеют большое значение при расчете химических равновесий. [c.98]

    Характеристические функции (например, термодинамические потенциалы, а также энтропия, как это ясно из сказанного выше) могут служить критериями направления процесса и равновесия. [c.124]

    Ha основании этого сопоставления можно сформулировать условия равновесия системы следующим образом в состоянии равновесия системы термодинамические потенциалы ее имеют минимальное значение ири постоянстве своих естественных переменных, а энтропия имеет максимальное значение при постоянстве внутренней энергии и объема системы. [c.125]

    Фазовые переходы, характеризующиеся равенством изобарных потенциалов двух сосуществующих в равновесии фаз и скачкообразным изменением энтропии и объема при переходе вещества из одной фазы в другую, называются фазовыми переходами первого рода. К иим относятся агрегатные превращения—плавление, испарение, возгонка и др. [c.140]

    Кроме фазовых переходов первого рода, существуют также фазовые переходы второго рода. Для них характерно не только равенство изобарных потенциалов, но и равенство энтропий и объемов сосуществующих в равновесии фаз, т. е. отсутствие теплового эффекта процесса и изменения объема при температуре превращения  [c.143]

    Димерные комплексы пероксида водорода исследованы на уровне Q ISD(T)/6-311G(2i/,y9)//MP2/6-311 + G d,p) [12]. На поверхности потенциальной энергии найдено два минимума, строение которых показано на рис. 2.2. Симметричный комплекс А характеризуется большей энергией димеризации (-29.3 кДж/моль против -24.7 кДж/мольдля комплекса Б), однако энтропия равновесия [-124 Дж/моль К (А) и -111 Дж/моль К (Б)] нивелирует предпочтительность комплекса А так, что расчетные значения константы равновесия в интервале 298—373 К для обоих комплексов практически совпадают. Высокий дипольный момент структуры Б (2.7 D) может служить дополнительным фактором стабилизации этого комплекса в полярных растворах. Инверсия комплексов А и Б протекает через переходные состояния, также стабилизированные водородными связями, [c.78]

    Рассмотрим систему, состоящую из химических веществ Aj, между которыми могут происходить реакции типа oi.jAj = 0. Пусть температура и давление поддерживаются постоянными. Состояние системы будет самопроизвольно изменяться в сторону общего увеличения энтропии до тех пор, пока не будет достигнуто равновесие и дальнейший прирост энтропии станет невозможным. Если при бесконечно малом изотермическом изменении состояния системы должно быть поглощено количество тепла dq, а прирост энтропии в системе равен dS, то общее изменение энтропии системы и термостата составляет dS — dqlT. Однако [c.47]

    Книга содержит сведения о термодинамических свойствах фильтрационного потока нефти, газа и нефтегазовых систем (бинарных смесей). На диаграммах и в таблицах приведены важнейшие термодинамические функции пластовой жидкости (теплоемкости, энтальпии и энтропии, изобарно-изотермического потенциЛга, константы равновесия, плотности и др.) в процессе фильтрации в диапазоне давлений от 30 до 300 кГ см и при температурах до 80° С.,  [c.2]

    Очень редко приводят значения важнейших термодинамических параметров (энтальпия и энтропия, теплоемкость, изобарно-изотермический потенциал и койстанты равновесия и др.) в условиях пористой среды пласта и в процессе фильтрации по нему нефтегазовых потоков (бинарных сдстем) при различных давлениях и температурах. Исключением являются работы (10, 29, 32, 47, 81), в которых рассмотрены некоторые термодинамические свойства различных углеводородных систем. [c.5]

    Самые различные процессы в природе сопровождаются выделением или поглощением тепла, количество которого определяется характером процесса и калорическими свойствами исследуемого вещества (твердого тела, жидкости, газа и др.). Важнейшим из термодинамических свойств является теплоемкость, которая позволяет исследовать структуру образца и силы взаимодействия атомов и атомных групп в молекуле детально изучить и выявить энтропию системы, фазовые переходы, критические явления, состояние адсорбированного вещества определить количество примесей в веществе или растворе многокомпонентной жидкости вычислить характеристические термодинамичеокие функции различных систем и сред и констант равновесия их и др. [c.29]

    Оба вывода Клаузиуса соверщенпо несовместимы с основными положениями диалектического материализма. Энгельс подверг указанные высказывания Клаузиуса жесткой критике. Он писал В каком бы виде ни выступало перед нами второе положение Клаузиуса и т. д., во всяком случае, согласно ему, энергия теряется, если не количественно, то качественно. Энтропия не может уничтожаться естественным путем, но зато может создаваться. Мировые часы сначала должны быть заведены, затем они идут, пока не придут в состояние равновесия, и только чудо может вывести их из этого состояния и снова пустить в ход. Потраченная на завод часов энергия исчезла, по крайней мере в качественном отношении, и может быть восстановлена только путем толчка извне. Значит, толчок извне был необходим также и вначале значит, количество имеющегося во вселенной движения, или энергии, не всегда одинаково значит энергия должна была быть сотворена значит, она сотворима значит, она уничтожима. Лс1 аЬ5иг(]ит1 [До абсурда ] (Ф. Энгельс, Диалектика природы, Госполитиздат, 1953, стр. 229). [c.106]

    Термодинамическая вероятность состояния W и энтропия изолированной системы S являются различными мерами стремления системы к равновесию. Обе величины возрастают при необратимых процессах, приближающих систему к равновесию, и достигают максимума при равновесном состоянии системы. Между величинами W и S имеется количественная связь. Общий вид этой связи нетрудно установить, если учесть аддитивность эитропии, которая является суммой энтропий отдельных частей равновесной системы, и мультипликативность вероятности сложного события, которая является произведением вероятностей отдельных независимых событий. [c.107]

    Внутренняя энергия, таким образом, является изохорно-из-энтропным потенциалом, а энтальпия—изобарно-изэнтропным потенциалом. Эти функции могут служить критериями равновесия при условии постоянства энтропии. Энтропию непосредственно измерять нельзя, н контроль ее постоянства при неравновесных процессах затруднителен. Поэтому функции U и И не находят широкого применения в качестве критериев направления процесса и равновесия [c.122]


Смотреть страницы где упоминается термин Энтропия при равновесии: [c.317]    [c.254]    [c.317]    [c.335]    [c.15]    [c.31]    [c.125]    [c.319]    [c.258]    [c.275]    [c.582]    [c.287]   
Учебник физической химии (1952) -- [ c.144 ]




ПОИСК







© 2025 chem21.info Реклама на сайте