Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карбоновые кислоты, гидрирование в спирты

    В 1867 г. Г. Дикон разработал получивший всемирную известность хлорный процесс—получение хлора окислением НС1 воздухом над медными соединениями. В 1867 г. А. Гофман получил впервые формальдегид окислением метилового спирта воздухом над платиной. В 1871 г. М. Г. Кучеров открыл замечательную реакцию гидратации ацетилена разбавленной серной кислотой в присутствии ртутных солей, которая лежит в основе многих каталитических превращений ацетилена, его гомологов и производных. В 1875 г. Кл. Винклер разрешил, наконец, проблему каталитического окисления SO, в SO3 воздухом в присутствии платинового катализатора, разработав промышленный способ контактного синтеза серной кислоты. Этот вопрос имеет многолетнюю интересную историю, начиная с работ И. Деберейнера и патента П. Филлипса в 1831 г., рекомендовавшего также платиновый катализатор, по потерпевшего неудачу из-за неумения проводить очистку сернистого газа от контактных ядов. В 1877 г. М. М. Зайцев опубликовал свои исследования по восстановлению различных органических соединений водородом в гетерогенной фазе над платиной или палладием, предвосхитив по существу методику гидрирования, разработанную гораздо позднее. В том же 1877 г. Н. А. Меншуткин начал свои классические исследования по приложению химической кинетики к органическим ссединениям в области изучения скоростей этерификации различных карбоновых кислот спиртами. В 1878 г. А. М. Бутлеров открыл реакцию уплотнения олефинов под действием серной кислоты, что явилось преддверием к синтезу высокомолекулярных соединений и процессов алкили-рования, имеющих сейчас огромное значение. Г. Г. Густавсон провел ряд исследований по каталитическому действию галогенидов алюминия на органические соединения, несколько опередив работы Ш. Фриделя и Дж. Крафтса. [c.15]


    Гидрирование жиров. Жиры животного и растительного происхождения состоят в основном из триглицеридов предельных и непредельных карбоновых кислот. В некоторых жирах встречаются эфиры высокомолекулярных жирных кислот и высокомолекулярных спиртов алифатического ряда. В качестве примесей могут быть соединения фосфора, азота и серы. [c.43]

    Вторая группа процессов гидрирования соответствует восстановлению органических соединений (хотя к восстановлению относят и превращение карбонильных соединений в спирты, не сопровождающееся отщеплением воды). К ним принадлежит гидрирование карбоновых кислот в спирты, спиртов — в углеводороды, амидов кислот и нитросоедииений — в амины и т. д.  [c.458]

    При гидрировании самих карбоновых кислот образующиеся спирты также дают с ними сложные эфиры [c.505]

    Карбоновые кислоты легко восстанавливаются до первичных спиртов под действием алюмогидрида лития [457]. Реакция не останавливается на стадии образования альдегида (см., однако, т. 2, реакцию 10-85). Условия этого восстановления очень мягкие — реакция хорошо идет при комнатной температуре. Используют и другие гидриды, но не боргидрид натрия (см. табл. 19.5) [458]. Каталитическое гидрирование в этом случае также обычно оказывается неэффективным. Для восстановления карбоксильных групп особенно удачно использование борана (табл. 19.4), который позволяет селективно проводить реакцию в присутствии многих других функциональных групп (хотя реакция с двойными связями идет примерно с той же скоростью) [459]. Гидрид алюминия восстанавливает группы СООН, не затрагивая связей углерод — галоген в той же молекуле. [c.316]

    Гидрирование фталевых кислот и их эфиров. Гидрирование трех изомерных фталевых кислот в циклические спирты осуществляется с большим трудом. Ароматическое кольцо гидрируется значительно хуже, чем в бензоле или феноле. При прямом гидрировании фталевых кислот существенное развитие имеют побочные реакции. Так, при использовании металлических катализаторов на основе меди, хрома, никеля, кобальта и платины происходит не только насыщение кольца, но и декарбоксилирование. Полученный продукт содержит циклогексан и моно-карбоновую кислоту. [c.49]

    Восстановление и каталитическое гидрирование. Восстанавливая карбоновые кислоты, можно получить альдегиды и первичные спирты, например  [c.400]


    В процессах гидрирования, сопровождающихся выделением воды, равновесие обычно смещено вправо в большей мере, чем в только что рассмотренных случаях. Так, гидрирование спиртов в углеводороды и нитросоединений в амины практически необратимо при всех допустимых температурах. Исключением является превращение карбоновых кислот в спирты [c.462]

    Гидрирование на хромите меди протекает при температуре 100-300 °С и давлении 40 00 атм. В противоположность никелю он значительно более активен при восстановлении углерод-кис-лородных связей, чем при восстановлении ароматических циклов используется в промышленности как катализатор гидрирования эфиров высших карбоновых кислот в спирты  [c.24]

    Гидрирование ароматических кислородсодержащих соединений (альдегидов, кетонов, спиртов, карбоновых кислот и т. д.) может протекать в двух основных направлениях — превращение ароматического кольца в нафтеновое и восстаноз-ление кислородной группы. По сравнению с гидрированием алифатических соединений имеется ряд особенностей. [c.44]

    Гидрирование алифатических карбоновых кислот и сложных эфиров широко применяется в промышленном органическом синтезе при получении спиртов. [c.795]

    Сложные эфиры карбоновых кислот реагируют с нуклеофилами, при этом замещается алкоксигруппа — происходит ацилирование нуклеофила. Иногда наблюдается алкилирование нуклеофила. Для сложных эфиров с а-водородным атомом характерны реакции с участием этого атома (сложноэфирная конденсация). Известны специфические реакции (ацилоиновая конденсация). Гидрирование сложных эфиров до спиртов рассмотрено в гл. XIV. А.2. [c.575]

    Алканолы с Си — Сац (жирные спирты) получают или гидрированием смеси насыщенных карбоновых кислот (продуктов окисления парафина), или окислением триалкилалюминия. Эти спирты применяют в производстве моющих средств, эмульгаторов, пластификаторов, косметических средств, поверхностно-активных веществ. [c.477]

    Особенно активны рениевые катализаторы (НезО ) в реакциях гидрирования карбоновых кислот в спирты [197] и амидов в амины. Температура гидрирования на рениевых катализаторах на 100—250° С ниже, чем на других катализаторах (Си, Сг). При 150—170° С и давлении 135—270 бар за несколько часов происходит гидрирование монокислот, а при 200—250° С — двухосновных кислот [197]. Гидрирование кислот при отсутствии воды всегда сопровождается образованием побочных продуктов — эфиров. В водных растворах эфиры гидрируются или вовсе не образуются. [c.690]

    Для восстановления карбоновых кислот в спирты предложены различные катализаторы медные [13], кобальтовые [14], цинкхромовые [12] и медьхромовые оксидные [15]. Однако при гидрировании нафтеновых кислот из всех перечисленных катализаторов испытаны только медьхромовые и цинкхромовые катализаторы. [c.105]

    Многие процессы гидрирования протекают через ряд промежуточных стадий. Так, карбоновые кислоты, альдегиды и кетоны восстанавливаются иоследовательно в спирты и углеводороды [c.469]

    При обработке соединений, содержащих двойные связи, озоном (обычно при низких температурах) получаются вещества, называемые озонидами (11), которые можно выделить. Многие из них взрывоопасны, поэтому их чаще разлагают действием цинка в уксусной кислоте или путем каталитического гидрирования, что приводит к 2 молям альдегида или 2 молям кетона или к 1 молю кетона и 1 молю альдегида в зависимости от природы заместителей у двойной связи в олефине [148]. Разложение озонидов И можно осуществить также с помощью многих других восстановителей, среди которых триметилфосфит [149], тиомочевина [150] и диметилсульфид [151]. Однако озониды можно также либо окислять действием кислорода, перкислот или Н2О2, в результате чего получаются кетоны и (или) карбоновые кислоты, либо восстанавливать действием алюмогидрида лития, боргидрида натрия, ВНз или путем каталитического гидрирования избытком Нг, что дает 2 моля спирта [152]. Озониды можно также обрабатывать либо аммиаком и водородом в присутствии катализатора, что приводит к соответствующим аминам [153], либо спиртом и безводным НС1, в результате чего получаются сложные эфиры карбоновых кислот [154. Следовательно, озонолиз — синтетически важная реакция. В прошлом эта реакция была основой ценного метода установления положения двойной связи в неизвестных соединениях, хотя с распространением инструментальных методов установления структуры этот метод применяется все реже. [c.280]

    Восстановление карбоновых кислот протекает с большим трудом. Обычный восстановитель (кислота + металл) в этих условиях неэффективен. Каталитическое гидрирование кислот при высоком давлении (100 атм) в присутствии хромита меди (СиСгОг) как катализатора приводит к получению спиртов. Обычные металлические катализаторы (никель, палладий, платина)—инертны. Алюмогидрид лития гладко превращает карбоновые кислоты в соответствующие спирты  [c.147]


    Восстановление карбонильной группы в карбоновых кислотах и их афирах до метиленовой переводит их в соответствующие спирты. Эту реакцию можно провести тремя методами а) по Буво — Блану б) каталитическим гидрированием в присутствии меднохромовото катализатора или иикелн Рсвая в) комплексными гидридами металлов. [c.83]

    Расщепление эфиров гидрированием. Сложные бензилового спирта расщепляются на палладиевом катализаторе (Pd/Ha) с обр, нием соответствующих карбоновых кислот и толуола [74]. Этот способ имеет г тиввгое значение, например для расщепления аиилиров энных эфиров ыалоново  [c.368]

    Из приведенных примеров обращения активности восстанавливающихся групп при гидрировании, очевидно, следует, что, хотя их относительная реакционная способность в основном определяется химическим строением, некоторую селективность действия проявляет и катализатор, т. е. металл катализатора и модифицирующие добавки (промоторы и дезактиваторы). Платиновые катализаторы, на которых при комнатной температуре и атмосферном или слегка повышенном давлении гидрируются почти все типы органических соединений, полностью неэффективны при восстановлении карбоновых кислот и их эфиров в спирты. Хромит цинка, на котором при высокой температуре и давлении гидрируется алкокси-карбонильная группа, неактивен при восстановлении легко гидрирующейся на других катализаторах С=С-связи. Поверхностные осмиевые катализаторы, в отличие от скелетного никелевого катализатора или оксида платины, обеспечивают первоочередное восстановление карбонильной группы в а,-ненасыщенных альдегидах  [c.34]

    В последнее время в нашей лаборатории проведено исследование гидрирования фенола на цеолитах. Оказалось, что,в отличие от ароматических углеводородов (бензола, толуола, ксилолов), бензольное кольцо в молекуле фенола гидрируется на цеолитах значительно труднее. Так, на Na-фор-мах цеолитов А, Y, морденит и ЦВМ при 300°С и давлении 2 МПа конверсия фенола в циклогексанол находится на уровне 3-6%. Причина, возможно, заключается в том, что фенол как кислота (более сильная, чем спирты, но слабее карбоновых кислот) отравляет основные центры цеолита, затрудняя реакцию гидрирования. Даже введение палладия в цеолиты начинает сказываты я на активности катализатора только при содержаниях металла 0,5% (рис. 1.39). А при содержаниях палладия от 0,001 до 0,1% активность катализаторов остается на низком уровне. Интересно отметить, что на палладийсодержащих цеолитах, в отличие от чисто Na-форм, в качестве продуктов гидрирования фенола образуются циклогексанол и циклогексанон приблизительно в равных количествах. [c.82]

    Для производных изоиндола известны реакции, протекающие с участием функциональной группы и не затрагивающие ядро молекулы. Так, нитрил изоиндол-1-карбоновой кислоты (1.150) превращается в ее амид при действии 10 %-ной щелочи [160]. Практически количественно снимается фталильная защита у изоиндола (1,163) при действии гидразина при этом образуется изоиндол (1.84, Н = На) [392]. Изоиндол (1.128, б) ацетилируется в различных условиях с образованием преимущественно диацетильных производных — продуктов реакции по атому кислорода спиртовой группы и атому азота Ы-метилкарбомо-ильной группы [646, 647]. Изоиндолы (1.52) при гидрировании в метиловом спирте с добавкой метилата натрия и Рс1/Ва504 как катализатора сохраняют изоиндольную структуру, но теряют атомы хлора, давая 1-формил-2Н-изоиндолы с выходом 80 % [212]. Аналогично происходит дегидрирохлорирование (1.271) на катализаторе Рс1/С [254]. Изоиндол (1.283) при кипячении в течение 2 ч с избытком гидразина в этаноле образует соединение (1.284) [445]  [c.86]

    Большую практическую ценность представляют продукты, возникающие при дальнейших превращениях озонида, — спирты, альдегиды, кетоны, кислоты и даже амины. Спирты образуются при восстановлении озонида гидридами металлов (алюмогидридом лития пли борогидридом натрия) или при каталитическом гидрировании в присутствии никелевого или платинового катализатора (схема 59), Альдегиды получают при более мягких условиях восстановления для этой цели обычно используют цинк в кислоте, три-фенилфосфин, диметилсульфид нли катализатор Линдлара (схема 60). Алкины превращаются в карбоновые кислоты в условиях превращения алкенов в альдегиды. Амины образуются при восстановлении озонидов в присутствии никеля Ренея и аммиака (схема 61) или восстановлением оксимов. Кислоты образуются при действии различных окислителей, например пероксикислот или оксида серебра (схема 62), [c.54]

    Восстановление соединений с кислородными функциональными группами. При восстановлении с помощью смеси красного фосфора и иодистоводородной кислоты в запаянных ампулах или в ряде случаев при каталитическом гидрировании спирты, альдегиды, кетоны и карбоновые кислоты превращаются в алканы. [c.197]

    При гидрировании сложных эфиров карбоновых кислот получаются первичные спирты. Гидрирование осуществляется водородом в присутствии катализатора (Н, Ni) или водородом в момент выделения, образующимся при растворении металлического натрия в спиртах (Na+ aH OH)—метод Буво — Блана (1903) или комплексными гидридами металлов (LiAlH )  [c.284]

    В 1940 г. Венцелем был разработан процесс каталитического гидрирования оксида углерода в стационарном слое плавленого железного катализатора — синол-процесс. Синтез проводили при относительно низких температурах (180— 200 °С) и 0,5—2,5 МПа. В жидких продуктах синтеза кроме спиртов имелось-2—7°/о (масс.) других кислородсодержащих соединений (сложные эфиры, альдегиды, кетоны и карбоновые кислоты). Выход первичных алифатических спиртов достигал 60—70% от суммы жидких продуктов. [c.307]

    Скелетный никель оказался исключительно удачным катализатором для реакции восстановления карбоновых кислот фуранового ряда 156]. Если кислоты подвергать гидрированию в форме солей, эфиров или амидов, то фурановые кольца восстанавливаются при 80—100° без побочных реакций. При использовании в качестве катализатора хромита меди фурановое кольцо не восстанавливается при температурах ниже 160°. Приболее высоких температурах наблюдается разрыв кольца. При гидрировании фурфурола или фурило-вого спирта при температурах выше, 170° получается смесь двух пентандиолов  [c.93]


Смотреть страницы где упоминается термин Карбоновые кислоты, гидрирование в спирты: [c.294]    [c.496]    [c.505]    [c.520]    [c.246]    [c.107]    [c.111]    [c.1069]    [c.111]    [c.23]    [c.106]    [c.249]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.1064 ]




ПОИСК





Смотрите так же термины и статьи:

Спирто-кислоты



© 2024 chem21.info Реклама на сайте