Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молибден перекисью водорода

    Например, перекись водорода образует в сернокислой среде окрашенные в желтый или красный цвет надкислоты только с титаном, ванадием и молибденом. [c.23]

    Щавелевая кислота [667], перекись водорода [бН] и фториды [447, 670] при определенных условиях -маскируют молибден. Например, в присутствии избытка щавелевой кислоты шестивалентный молибден не взаимодействует с пирокатехином, пирогаллолом, танином, фенилгидразином и другими реагентами [667]. [c.98]


    Перекись водорода маскирует шестивалентный молибден [674]. [c.19]

    Методом перманганатометрии путем прямого титрования можно определять различные восстановители олово (II), железо (II), молибден (III), вольфрам (IV), ванадий (IV), перекись водорода, сурьму (III), нитриты, оксалаты и др. Если определяемые элементы имеют более высокую степень окисления, их можно предварительно восстановить. Для восстановления ионов железа (III) часто пользуются редуктором Джонса, представляющим собой стеклянную трубку с краном (типа бюретки), наполненную гранулами металлического цинка. В присутствии раствора серной кислоты в редукторе Джонса образуется водород, который в момент выделения восстанавливает ионы железа (III) в ионы железа (II). [c.164]

    Шестивалентный молибден можно отделять от трехвалентного железа, а также меди, никеля, марганца и небольших количеств титана, пропусканием анализируемого сернокислого (но не солянокислого) раствора, содержащего перекись водорода, через колонку с катионитом СБС или вофатитом Р в водородной форме [6, 7, 238]. При этом анионы перекисного соединения молибдена переходят в фильтрат, а катионы названных элементов сорбируются. Метод был применен при анализе стали [6, 7], железной руды [6, 7], ферромолибдена [7], железных метеоритов [238]. [c.133]

    При определении макроколичеств молибдена получают удовлетворительные результаты несмотря на то, что при встряхивании металлической ртути с раствором соляной кислоты в присутствии кислорода воздуха (и в отсутствие соединений молибдена) образуются значительные количества перекиси водорода [1117]. Дело в том, что когда в растворе находится соединение молибдена, то образовавшаяся перекись водорода быстро разлагается каталитически. Весь молибден находится в пятивалентном состоянии. Однако при определении микроколичеств молибдена --0,005 г) необходимо проводить восстановление в атмосфере инертного газа, чтобы исключить влияние кислорода воздуха и образование перекиси водорода. [c.191]

    Медь даже в небольших количествах очень сильно мешает определению молибдена. (717, 1117]. Для него получают слишком низкие результаты. Медленная реакция аутоокисления пятивалентного молибдена кислородом воздуха резко ускоряется в присутствии меди как катализатора. Предполагается, что при этой реакции образуется перекись водорода в качестве промежуточного продукта. Когда раствор соединения пятивалентного молибдена, полученного в ртутном редукторе, фильтруют в присутствии воздуха, то происходит окисление следовых количеств ИОНОВ одновалентной меди кислородом с образованием перекиси водорода, которая затем окисляет некоторое количество пятивалентного молибдена. Вследствие протекания этой реакции для молибдена получают низкие результаты. В то же время при определенных условиях (1Л НС1) пятивалентный молибден спо собен восстанавливать медь до одновалентного состояния. [c.191]


    В объемном методе (см. стр. 20) после отделения титана алюминий осаждают 8-оксихинолином из раствора тартрата аммония, содержащего перекись водорода. В этих условиях молибден, не отделенный титан, ванадий и хром остаются в растворе. Оксихинолят алюминия растворяют в соляной кислоте, а алюминий определяют косвенным методом — бромированием выделившегося 8-оксихинолина . Этот метод применим для анализа сплавов, содержащих до 10% железа, марганца, хрома, молибдена, ванадия и олова. [c.18]

    Для молибдена известен ряд интенсивно окрашенных соединений. Однако при обычной реакции 1 г-атом молибдена может образовать лишь 1 моль окрашенного комплекса. Чувствительность определения молибдена может быть сильно повышена, если использовать его каталитические свойства. Например, перекись водорода хотя и является сильным окислителем, но количественно реагирует с иодидом очень медленно. Молибден является одним из катализаторов этой реакции, поэтому в его очень разбавленных растворах через некоторое время на 1 г-атом молибдена может выделиться 10, 50, 100 и более грамм-атомов иода. Иод затем определяют фотометрически (с крахмалом). Таким образом, удается значительно повысить чувствительность определения молибдена. [c.31]

    Перекись водорода. Если выпарить досуха на водяной бане испытываемый на молибден раютвор, прибавить концентрированный NHs до щелочной реакции и затем 3—4%-ную перекись водорода, раствор тотчас окрасится в розовый или краденый цвет (в зависи.мости от количества имеющегося молибдена. Ред. ). Если к зыпаренно.му розовому или красному раствору прибавить серную или азотную кислоты, то появляется желтое окращивание ЕследстБие образования надмолибденовой кислоты НМ0О4. [c.546]

    Устойчив молибден в большинстве солевых растворов, в том числе хлоридах и морской воде, а также в отношении атмосферной коррозии. Поскольку характер оксидов молибдена более кислый, чем оксидов хрома, стойкость молибдена в щелочах по сравнению с хромом еще ниже. Даже в разбавленных щелочных растворах молибден медленно корродирует, если присутствуют окислители (кислород, перекись водорода, нитраты, соли хлорноватой кислоты и т. п.). С повышением температуры и концентрации щелочи и окислителей скорость его коррозии заметно возрастает. При температурах выше 600°С в расплавах щелочей молибден растворяется и в отсутствие кислорода. [c.303]

    Наиболее интересны обширные исследования Тенара по реакционной способности нерекиси водорода. В обш,ем он приводит данные по реакциям для 130 с лишком веществ, куда входят металлы, окислы, соли, кислоты и основания, включающие соединения 40 элементов и различные органические вещества. Самая первая проба, показавшая, что кислая перекись водорода не дей-, ствует на золото, еще немного напоминает старую алхимию. Большая часть веществ, которые Тенар испытывал по их действию на перекись водорода, вызывала ее разложение. При этом разложении некоторые вещества химически изменялись так, мышьяк, молибден, вольфрам и хром окислялись, соединяясь с частью кислорода перекиси. Установлено, что некоторые металлы, такие, как олово, сурьма и теллур, не оказывают никакого действия даже на концентрированную перекись водорода. Разложение перекиси водорода всегда сопровождалось выделением значительного количества тепла. Тенар затруднялся, объяснить это явление для реакции, происходящей с выделением кислорода, в свете существовавшей тогда теории. [c.13]

    Из других комплексообразующих реагентов, применяемых в элютивной ионообменной хроматографии, следует назвать оксалаты, которые вымывают из колонки железо(111) и алюминий из смеси их с бериллием [21] тартраты, которые вымывают алюминий из смеси с медью [22], сульфосалицилаты, применяемые для той же смеси [22], и перекись водорода, вымывающая из колонки такие ионы переходных металлов, которые образуют с этим реагентом комплексные соединения сюда относятся титан(1У) [23] ванадий(У) и молибден(У1) [24]. Можно было бы упомянуть и другие реагенты. [c.200]

    Образовавшийся осадок отделяют флотацией, для чего прибавляют 5 мл толуола и встряхивают. После расслаивания водную фазу сливают, а осадок промывают 1%-ным раствором роданида аммония, растворяют ъ 2 мл серной кислоты (1 3), раствор переносят в кварцевый стаканчик, добавляют 1 мл 30%-ной перекиси водорода и выпаривают на песчаной бане до появления густых белых паров. Если при этом жидкость пе обесцвечивается, то добавляют еще перекись водорода и повторяют выпаривание. Жидкости дают остыть, разбавляют водой до 10—20 мл и определяют молибден роданидным методом. [c.153]

    Как правило, колориметрическому определению бора мешают присутствие окислителей (нитраты, хроматы, перекись водорода), разрушающих красители, фтор-ион, образующий комплексное соединение с бором [91], а также некоторые элементы, такие, как железо, никель, марганец, мель, хром, кобальт, алюминий, ванадий, титан, молибден, цирконий, олово, мышьяк. Влияние окислителей устраняют восстановлением их гидразином, фтор-ион связывают добавлением двуокиси кремния. В литературе имеется обзор методов определения бора с применением дистилляции, ионного обмена, электролиза с ртутным катодом и определения в видимой и УФ-обла-сти спектра с применением флуорометрии, спектроскопии, полярографии и амперометрического титрования в урановых материалах, полупроводниках, сталях и цвет ных сплавах [107, 108]. Подробно методы отделения ме- тающих примесей изложены в п. 2 гл. I. [c.49]


    Точечная коррозия происходит в растворах хлористых металлов, если стандартный окислительно-восстановительный потенциал их выше, чем 4-0,15 в (табл. 1). Например, сталь 18-8, погруженная в Ю /,, раствор хлористого никеля, находящийся в открытом сосуде, в течение 24 час. корродирует со скоростью 0,066 см год без признаков точечной коррозии. Однако, если прибавить к раствору перекись водорода, то нержавеющие стали, включая и стали, содержащие молибден, подвергаются сильному действию точечной коррозии. В этом случае окислительно-восстановительный потенциал будет положительнее, чем 4-0,15 в. [c.63]

    Холодная и горячая вода не действует на молибден. Устойчив он также в большинстве солевых растворов, в том числе хлоридных, и в морской воде, а также не корродирует в атмосфере. Окислы молибдена имеют, однако, кислый характер, более кислый, чем у СгзОз, и поэтому устойчивость молибдена в щелочах ниже, чем у хрома. В щелочных растворах молибден корродирует, если присутствуют окислители (кислород, перекись водорода, нитраты, соли хлорноватой кислоты и т. д.). При температурах выше 600° в расплавах щелочей молибден растворяется и в отсутствие кислорода. [c.564]

    Этот метод не отличается большой чувствительностью (предел чувствительности метода 0,01% урана), но применению его мешает относительно небольшое число элементов. Основными элементами, влияющими на определение урана, являются, помимо хрома, молибден (VI) и ванадий (V), которые также дают окраску с перекисью водорода в карбонатной среде, хотя значительно менее интенсивную, чем уран. Имеются указания на то, что ванадий не мешает колориметрированию урана з растворе, содержащем едкий натр и перекись натрия. Значительное влияние оказывает марганец, что обусловлено заметной окклюзией урана двуокисью марганца и каталитическим разложением перекиси. Большие количества железа также каталитически разлагают перекись кроме того, выделяющимся осадком захватывается некоторая часть урана. Для исключения мешающего влияния железа колориметрирование рекомендуется осуществлять в аммиачной среде в присутствии тартрата. [c.486]

    Перекись водорода и перекись натрия препятствуют полному осаждению циркония на холоду при кипячении в их присутствии цирконий полностью осаждается. При осаждении гидроокиси циркония щелочами отделяются следующие элементы мюминий, галлий, цинк, молибден, вольфрам, ванадий, бериллий, мышьяк и Сурьма. В присутствии карбонатов отделяется уран. Для этой цели к щелочи прибавляют I—2 г Na Og. Прибавление перекиси водорода улучшает отделение. В осадке с цирконием находятся железо, титан, марганец, хром, кобальт, никель, медь, кадмий, серебро, индий, таллий, торий и редкоземельные элементы. Магний и щелочноземельные металлы при достаточном содержании карбонатов также полностью осаждаются. Этот метод может иметь некоторое значение для отделения циркония от молибдена, вольфрама, ванадия, алюминия и бериллия. По данным Руффа [700], бериллий не отделяется щелочью количественно, так же как и алюминий, особенно в присутствии больших количеств аммонийных солей. Осаждение гидроокиси циркония аммиаком может применяться при гравиметрическом определении циркония. Но этот метод используется лишь в случае отсутствия примесей, осаждаемых аммиаком. [c.53]

    Потенциал 0,6 в. Примерно такие значения фкор устанавливаются на нержавеющих сталях в окислительных средах средней силы (перекись водорода, ионы РеЗ+, разбавленные растворы НЫОз и др.). Металлы при этом потенциале по скорости растворения располагаются в ряд Сг<Ы1< <Ре< / <Мо<Мп. Как видно, последовательность коррозионной стойкости металлов существенно изменилась. Возглавляют ряд металлы, которые при рассматриваемом потенциале находятся в пассивном состоянии. Причем в этом состоянии хром растворяется в 140, а никель лишь примерно в 3 раза медленнее, чем железо. Молибден уступил свое лидирующее положение в связи с переходом в область перепассивации. Аналогичное произошло и с вольфрамом. При избранном потенциале, положительнее области перепассивации, растворение вольфрама не зависит от потенциала и контролируется присутствующей на его поверхности плотной полупроводниковой труднорастворимой пленкой, состоящей из высших кислородных соединений вольфрама [63]. Подобное явление имеет место и на молибдене положительнее 0,7 в. Однако в этом случае, по-видимому, в связи с тем, что пленка образуется рыхлой, ток растворения молибдена примерно в 600 раз выше, чем вольфрама [65]. [c.28]

    Ход определения по Малинеку [84]. Щелочной раствор, содержащий в достаточном количестве комплексон для связывания железа и других катионов, нейтрализуют 80 %-ным раствором муравьиной кислоты и осаждают молибден прибавлением свежеприготовленного раствора сульфида аммония. Затем раствор подкисляют муравьиной кислотой с таким расчетом, чтобы в каждых 100 мл его содержалось 5 мл свободной муравьиной кислоты. После осаждения сульфида молибдена раствор нагревают на водяной бане, отфильтровывают осадок и промывают его 5 %-ной муравьиной кислотой. Осадок сульфида молибдена растворяют в смеси серной кислоты и перекиси водорода. Выпаривают перекись водорода и определяют молибден в присутствии комплексона, как было описано выше. [c.157]

    Весьма достойно примечания, что Щилов (1893), взяв 3 /о раствор Н О , прибавив к нему соды, извлек из смеси перекись водорода взбалтыванием с вфиром, а потом, испаряя эфир, получил 50% раствор Н ОЗ, совершенно свободный от других кислот, но он показывал явно кислую реакдию на лакмус. При этом нельзя не обратить прежде всего внимания на то, что перекиси металлов отвечают Н О , как соли кислоте, напр., Na O , ВаО и т. п. Затем следует указать на то, что О аналогичен S (гл. 15 и 20), а сера дает H-S,..., H- SO и H SO . Сернистая же кислота Н ЗОЗ непрочна, как гидрат, и дает воду и ангидрид SO . Если подставить вместо серы кислород, то из №503 и S02 получатся НЮО и ОО . Последний есть озон, а К О отвечает №0 как кислоте (перекись калия). Между же Н О и УРО могут существовать промежуточные соединения, из которых первое место и будет занимать Н О , и в ней, по, соответствию с соединениями серы, можно ждать кислотных свойств. Сверх того укажем на то, что для серы известны, кроме №5 (он есть слабая кислота), еще №5 , №5 ,..., H S . Таким образом, у Н-О с разных сторон имеются пункты сходства с кислотными соединениями что же касается до качественного сходства (по реакциям), то не только Na-O , ВаО и т. п. сходны с нею, но также и надсерная кислота №5-08, которой отвечает ангидрид 5-0 , и аналоги перекиси водорода, которые описываются в дальнейшем изложении. Теперь же заметим по отношению к обширному ныне разряду перекисных соединений а) что они подучаются или в таких условиях, в которых происходит перекись водорода (напр., при электролизе на аноде), или при посредстве ее чрез ее двойное разложение или присоединение Ь) что элементы, подобные 5, С и др., дающие кис. оты, способны образовать перекисные формы или надкислоты, образующие с основаниями свои соли, напр., надсерная кислота с) что металлы, подобные молибдену, ванадию и т. п., дающие высшие кислотные окислы КЮ", способны обыкновенно давать и надкислоты, отвечающие высшим окислам -j- кислород d) что металлы, дающие только основания КЮ , способны часто давать и свои перекиси, содержащие еще более кислорода, напр., натрий, барий и т. п., но эти перекиси, способные соединяться с другими перекисями и надкислотами, повидимому лишены способности давать соли с обычными кислотами, и е) все подобные перекисные соедине- [c.469]

    Извлечение повторяют до тех пор, пока отсутствие сколько-нибудь заметной окраски эфирного слоя не укажет, что весь, молибден и рений удалены. Соединенные эфирные вытяжки упаривают на водяной бане при 70°, пока объем не уменьшится до 5 или 10 мл, и добавляют затем 15 мл соляной кислоты (1 1). Остающийся эфир удаляют выпариванием, пропуская воздух над поверхностью остатка. Добавляют по каплям 30%-ную перекись водорода до исчезновения коричневой, красной или оранжевой окраски. Раствору дают постоять 15 мин., добавляя перекись водорода, если появляется какая-либо окраска. Раствор разбавляют до 200 мл серной кислотой (уд. вес 1,8) и перегоняют, как описано на стр. 402. Дестиллат должен иметь лишь слабый запах сернистого газа. Выделение серы ведет к пониженным результатам. Пропускают в дестиллат пары брома для удаления двуокиси серы (образование бледножелтой окраски). Колори- метрическое определение производят, как уже описано (стр. 403). [c.404]

    При растворении стали марок, содержащих молибден, добавлять перекись водорода не следуем, так как молибден, ок и-сляясь, дает окрашенное соединение, которое не разрушается в дальнейшем, что может служить источником ошибок. [c.37]

    Водные растворы озона и металлы. Действие водных растворов озона на металлы сводится, по существу, к действию перекиси водорода. Установлено, что уголь, палладий, платина осмий и иридий энергично разлагают перекись водорода значительно более спокойно разлагают ее ртуть, порошки висмута и марганца и тонкая свинцовая проволока. Слабо действуют на перекись водорода медь, никель, кобальт и кадмий, сами при этом не изменяясь. Селен, мышьяк, молибден, вольфрам, хрсм, калий, натрий, цинк не только разлагают перекись водорода,, но и сами окисляются, тогда как сурьма, теллур, олово и железо на перекись водорода не действуют. [c.505]

    НЫЙ перекисный метод [4, 22, 127 — 129]. В щелочном растворе в присутствии перекиси водорода уран образует желтый перуранат. В слабо кислых растворах (pH 4—5) окраска комплекса урана с Н2О2 значительно слабее. Перекись водорода прибавляют к щелочному раствору карбонатного комплекса урана или подщелачивают едким натром кислый раствор урана, содержащий перекись водорода. Перекисный метод обладает малой чувствительностью, но отличается высокой избирательностью и простотой выполнения. Наиболее интенсивная и устойчивая окраска образуется в растворах с pH > 12. При pH С 12 наблюдается ослабление окраски. Для того чтобы устранить уменьшение интенсивности окраски во времени, необходимо избегать присутствия в анализируемом растворе кислых карбонатов и солей аммония. Поглощение измеряют при 370—400 нм. Определению урана мешают хром(УХ), молибден(У1) и ванадий(У). [c.424]

    Величина светопоглощения пропорциональна концентрации элемента (0,1 М Н2О2). В области длин волн меньше 340 м 1 перекись водорода сама. поглощает свет. Азотная кислота должна отсутствовать. К элементам, которые образуют перекисные соединения подобно ниобию и танталу и поглощают свет в той же области спектра, относятся титан, молибден, вольфрам и рений (стр. 123). В условиях определения ванадий(У) восстанавливается до У(1У). Железо(1И) при 285 мц поглощает свет в 20 раз сильнее, чем надтанталовая кислота. Если присутствуют только небольшие количества железа (или других элементов, которые не реагируют с перекисью водорода, но поглощают свет в той же области, где поглощает ниобий), их влияние можно учесть, измеряя светопоглощение аликвотной части анализируемого раствора, не обработанного перекисью водорода. [c.621]

    Ниже очень коротко, в общих чертах, приведен ход анализа для определения рения в этом минерале. Измельчают 100 г пиролюзита, растворяют в теплой соляной кислоте, разбавив раствор примерно до 300 мл, после чего отфильтровывают нерастворившийся остаток. Фильтрат обрабатывают 20%-ным раствором хлорида олова(П) для восстановления желе-за(1П) и получения прозрачного розового раствора. Добавляют столько роданида калия, чтобы концентрация его составляла 0,6 г/100 мл, затем еще хлорида олова(П) до концентрации 0,5 г/100 мл. Через 5 мин к охлажденному раствору добавляют примерно 6() мл этилового эфира и извлекают им роданиды молибдена и рения. Экстракцию повторяют столько раз, пока по отсутствию сколько-нибудь заметной окраски эфирного слоя можно будет считать, что весь молибден и рений извлечены. Объединенные эфирные экстракты упаривают на водяной бане при 70° до объема 5—10 мл и тогда прибавляют 15 мл соляной кислоты (1 1). Оставшийся эфир удаляют выпариванием, продувая воздух над поверхностью раствора. Добавляют по каплям 30%-ную перекись водорода до исчезновения бурой, красной или оранжевой окраски. Дают раствору постоять 15 мин, добавляя время от времени перекись водорода, чтобы предупредить образование какой-нибудь окраски. Разбавляют раствор серной кислотой (уд. вес. 1,8) до 200 мл и проводяг [c.687]

    Металлический хром в подкисленной или щелочной перекиси водорода сравнительно инертен, он лишь медленно растворяется в ней. Кроме изучения образования пероксохроматов, много внимания уделялось также восстановлению хромового ангидрата СгОд перекисью водорода до трехвалентного хрома [250]. Молибден также в любых валентных состояниях превращается в перекись [251], причем в присутствии перекиси водорода нельзя осадить молибден в виде фосфоромолибдата [252]. Сернистый молибден реагирует с перекисью водорода с образованием сульфата, что исключает возможность применения этого сульфида в качестве смазочного вещества в контакте с перекисью. Вольфрам может растворяться в перекиси водорода с образованием вольфрамовой кислоты Н и О , и последняя может быть превращена далее в пероксоволь-фраматы. [c.339]

    Во многих случаях, если перекись элемента происходит в присутствии воды и если вода удерживается, нельзя даже решить, содержится ли кислород в перекиси иного элемента или в перекиси водорода. Так, напр., молибден дает высший окисел МоО и он образует гидрат перекиси Мо-Н О = = Мо 0 №0. Можно полагать, однако, что это есть соеди яение перекиси молибдена с перекисью водорода Мо Н О = 2МоО + НЮ , так как для перекиси водорода известны ее соединения, напр., с ВаО и др. (гл. 4). [c.381]

    Приведенный ниже ход анализа включает разложение анализируемого образца породы сплавлением с едким натром или со смесью едкого натра и перекиси натрия, выщелачивание сплава водой, отгонку мышьяка в виде мышьяковистого водорода из фильтрата и определение его методом образования молибденовой сини. Рекомендуется к плаву добавлять перекись натрия, если в образце присутствует большое количество сульфидов или органических материалов (осадочные породы). Содержание мышьяка в остатке после выщелачивания очень мало (максимум 3% при анализе диабаза), поэтому обычно не требуется проводить повторное сплавление. Показано, что извлечение мышьяка, добавленного к граниту и диабазу, составляет более 95%. В 0,5 г анализируемого образца можно определить мышьяк Б количестве нескольких десятых ч. на 1 млн. Оэобщают, что медь, серебро, германий и теллур не мешают определению мышьяка, присутствуя в количествах 1 мг. Известно также, что хром, кобальт, никель, молибден, вольфрам и ванадий не влияют, присутствуя даже в значительно больших количествах. Сурьма в таких количествах, в которых она присутствует в осадочных породах или породах вулканического происхождения, не приводит к ошибкам. [c.258]


Смотреть страницы где упоминается термин Молибден перекисью водорода: [c.415]    [c.186]   
Фотометрический анализ (1968) -- [ c.251 , c.254 ]




ПОИСК





Смотрите так же термины и статьи:

Водорода ион перекисью водорода

Водорода перекись



© 2025 chem21.info Реклама на сайте