Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Платина определение от осмия

    Характерным свойством платиновых металлов является способность абсорбировать на поверхности некоторые газы, особенно водород. Склонность к абсорбции значительно возрастает у металлов, находящихся в мелкораздробленном и коллоидном состояниях. Наибольшая способность к абсорбции водорода присуща палладию I объем палладия при комнатной температуре может поглотить 350—850 объемов водорода. При поглощении определенного объема водорода кристаллическая решетка палладия расширяется, так как образуются твердые растворы водорода в металле. Абсорбционная способность по отношению к водороду убывает в ряду иридий, родий, платина, рутений, осмий. Абсорбированный водород легче всего удаляется из палладия, труднее — из платины и иридия. Платина (особенно платиновая чернь) довольно сильно поглощает кислород 100 объемов кислорода на 1 объем платиновой черни . Палладий и другие платиновые металлы поглощают кислород значительно меньше. [c.9]


    Осмий. Мы не нашли в литературе никаких сведений о газохроматографическом определении осмия в виде летучих комплексов с органическими лигандами. Джувет и Фишер [172] описали попытку газохроматографического определения осмия, иридия и платины в виде гексафторидов. Однако эти соединения разлагались в колонке с образованием черного осадка (по-видимо.л1у, свободного металла). [c.110]

    Для определения осмия, иридия и платины никаких люминесцентных методов их определения не описано, за исключением методов, основанных на применении рентгенофлуоресцентного анализа (см. стр. 146). [c.384]

    Палладий, платина (IV), осмий (IV), железо, медь и никель не мешают определению. [c.28]

    Согласно этой теории, катализ происходит только при структурном и энергетическом соответствии катализируемых молекул данному катализатору. Теорией Баландина было предсказано, что реакции каталитического гидрирования бензола и дегидрирования циклогексана могут идти только на переходных металлах, имеющих гранецентрированную кубическую структуру или гексагональную структуру и притом атомные радиусы строго определенных размеров. При этих условиях шестичленные циклы образуют на октаэдрических гранях кристаллов металла шесть связей М— — С — С, валентный угол которых близок тетраэдрическому углу. Данным условиям удовлетворяют палладий, платина, иридий, родий, осмий и все они являются активными катализаторами гидрирования бензола и дегидрирования циклогексана. В то же время металлы, обладающие объемноцентрированной структурой, например тантал, вольфрам, даже при почти таких же размерах их атомных радиусов, как у платиновых металлов, а также металлы, имеющие такую же кристаллическую структуру, как платина, но иные размеры атомных радиусов, в частности серебро, золото, или не относящиеся к переходным элементам — медь, цинк,—все эти металлы не проявляют каталитической активности в вышеуказанных реакциях. Таким образом, структура поверхностных соединений бензола и циклогексана с платиновыми металлами была описана и доказана. Мало того, было, в сущности, установлено, что в условиях катализа подобные соединения легко и притом в точности воспроизводятся. Иначе катализ был бы невозможен. [c.59]

    Для карбонилов прослеживается аналогия в соответствующих вертикальных триадах. Так, рутений и осмий, подобно железу, образуют пентакарбонилы Э(СО)5, представляющие собой летучие жидкости. Эти карбонилы легко образуют трехъядерные кластеры Эз(СО)12, которые термически более устойчивы. Среди карбонилов рутения известны и более сложные кластеры Ки4(СО)12, Кив(С0)18. Это твердые малорастворимые в воде, но легкорастворимые в неполярных органических растворителях вещества. В карбонильных соединениях родия и иридия имеется определенное сходство с кобальтом. Для них характерны кластерные карбонилы Эг(С0)8 — легкоплавкие кристаллические вещества, склонные к сублимации. С другой стороны, эти элементы, как и элементы первой диады платиноидов, образуют полиядерные твердые карбонилы Э4(СО)12 и Эа(С0)1в. Кроме того, для иридия известен полимер [1г(С0з)1 , чрезвычайно устойчивый по отношению к щелочам и кислотам. Для платины и палладия в отличие от никеля карбонильные производные малохарактерны, хотя и существуют. [c.424]


    Как и ожидалось из сравнения металлохимических свойств титана и металлов группы платины, в этих системах существуют первичные твердые растворы и интерметаллические соединения. Количество соединений при переходе от рутения к родию и палладию и от осмия к иридию и платине увеличивается. В составе, структуре и свойствах этих соединений при определенном сходстве наблюдается и существенное отличие (рис. 6). Для сравнения рассмотрим также соединения, образующиеся в сплавах титана с железом, кобальтом и никелем [3, 17]. (Диаграммы состояния двойных систем титана с железом, кобальтом и никелем на рис. 6 приведены из справочника Р. П. Эллиота Структуры двойных сплавов , системы с платиной — по данным [22 ). [c.187]

    Наиболее распространенным адсорбатом является водород. Его широко используют для определения поверхностей платины [19, 20], никеля [4, 6, 7], кобальта [4], железа [3], осмия, [c.43]

    Все платиновые металлы (рутений, родий, палладий, осмий, иридий и платина) в определенных условиях при облучении ультрафиолетовым светом могут восстанавливаться до низших валентных состояний и до свободных металлов. Однако работы по изучению фотохимических реакций платиновых металлов немногочисленны [383]. [c.60]

    Все платиновые металлы, за исключением платины, окисляются при нагревании на воздухе с образованием окислов. По этой причине при весовом определении палладия, родия, иридия, рутения и осмия в виде металлов требуется предварительное восстановление прокаленного металла в токе водорода. [c.32]

    Платина (II) не взаимодействует с бензидином. Соединения платины (IV) в количестве 5 мг реагируют лишь в присутствии больших количеств реагента с образованием желтоватых игл, при хранении принимающих фиолетово-синюю до черной окраску. Родий (III) образует розовато-желтый, а осмий — желтоватый осадок. Палладий (II) определению не мешает [10, 41]. [c.81]

    Определению мешают палладий, родий, иридий, осмий, рутений. Реактив пригоден для определения платины и палладия без их предварительного разделения. В этом случае палладий, дающий кроваво-красную окраску, определяют, измеряя светопоглощение при 525 ммк при комнатной температуре, когда платина не взаимодействует с реагентом, затем раствор нагревают и определяют суммарную абсорбцию также при длине волны 525 ммк. Содержание платины определяют по разности. Допустимые количества палладия составляют 0,25—1 мкг/мл. [c.162]

    Иридий, палладий и осмий могут присутствовать только в незначительных количествах (2—5% от количества родия), рутений до 18 и платина до 140%. Железо, кобальт, никель и медь не мешают определению, если их количества превышают содержание родия в 1,5—2 раза. [c.172]

    Мешает определению палладий при содержании его более 0,35 мкг/м.л, осмий при содержании более 0,3 мкг/мл и рутений при содержании более 0,1 мкг/мл. Платина, серебро и незначительные количества родия и иридия не мешают определению. [c.187]

    Малая избирательность реагентов, применяемых для определения платиновых металлов и золота, часто вызывает необходимость предварительного отделения определяемого элемента от сопутствующих ему металлов. В ходе анализа сложных материалов, содержащих все благородные металлы, последние, обычно, концентрируются совместно на одной из стадий анализа. Поэтому часто вначале прибегают к групповому разделению, к отделению друг от друга нескольких металлов, наиболее близких по химическим свойствам, а затем ищут пути разделения отдельных элементов. Для группового разделения используют различия в окислительно-восстановительных свойствах благородных металлов. Окислители (броматы, хлор) служат для отделения осмия и рутения от остальных благородных металлов. Восстановители (каломель, хлористую медь) применяют для отделения платины, палладия и золота от родия и иридия. Наиболее частыми сочетаниями металлов, получаемыми в результате группового разделения, являются осмий и рутений платина, палладий и золото родий и иридий. Для группового разделения, а также для отделения металлов друг от друга наряду с химическими применяют хроматографические и экстракционные методы. [c.218]

    Щелочной раствор, полученный после отгонки осмия и рутения, нейтрализуют НС1, выпаривают, соли растворяют в воде. Отделяют нерастворившийся осмистый иридий (см. выше). В фильтрате отделяют золото и неблагородные металлы нИ трованием , затем разрушают нитриты НС1 и переводят в хлориды. В растворе хлоридов восстанавливают платину до металла (см. гл. IV, стр. 108). В фильтрате отделяют родий от преобладающего количества иридия методами, приведенными в гл. V. Для конечного определения этих металлов используют весовые методы (см. гл. IV). [c.272]

    Конечное определение рутения, осмия и иридия производят гидролитическим методом (см. гл. IV, стр. 120, 125, 128). Платину и родий определяют в виде сульфидов (см. гл. IV, стр. 109, 118). [c.279]


    Определение платины, палладия, родия, иридия и осмия в лигатурном золоте. Образцы, содержащие 80—90% золота, серебро, осмистый иридий, родий, иридий и неблагородные металлы, анализируют по следующей схеме (схема 7). [c.293]

    Рид и Бенкс [338] выделил1< с помощью а-фурилдиоксима палладий в виде комплекса Pd( ioH7N204)2, который использовали в качестве весовой формы. Селективность у этого реагента такая же, как и у других оксимов. В кислой среде никель, медь, иридии, рутении и платина определению не. мешают, а золото и осмий мешают. По данным Ямасаки и др. [339], анг -форма ре- [c.48]

    Удовлетворительный метод отделения осмия от рутения предложили Зауэрбрун и Сендел [112] (см. методику 115). По этому методу рутений удерживают в растворе, восстанавливая его сульфатом железа(П), а осмий окисляют азотной кислотой и экстрагируют хлороформом. Экстракт обрабатывают сернокислым раствором тиомочевины и измеряют светопоглощение при 480 ммк. Метод пригоден для определения 5—100 мкг осмия. Хлориды мешают, так как в их присутствии образуются хлоро-осматы, не окисляющиеся до восьмивалентного состояния. Если присутствия хлоридов нельзя избежать, их нужно удалить осторожным выпариванием с серной кислотой в присутствии сульфата железа(II). В растворах, содержащих большие количества железа(П), меди(И), палладия(П) и платины(1У), результаты определения осмия удовлетворительны. [c.179]

    Большая часть платиновых металлов концентрата находится в виде сульфидов и арсенидов, нерастворимых в царской водке. Чтобы перевести платиновые металлы этих минералов в раствор, необходимо анализируемое вещество предварительно обжечь при ярко-красном калении до удаления окислов серы и мышьяка. Для обжига берут отдельную навеску 0,5 г нерастворимого в соляной кислоте остатка, полученного по (1), или используют остаток от определения растворимых и царской водке комионенто (см. выше). Остаток после обжига перед дальнейшей обработкой восстанавливают водородом он служит для определения золота, платины, палладия и родия. Для определения осмия и рутения сплавляют отдельную навеску с перекисью натрия (см. 3), так как при обжиге некоторая часть рутения и почти весь осмий теряются в виде своих летучих окислов. [c.422]

    Производные тиомочевины и тиосемикарбазида реагируют [особенно в присутствии хлорида олова(П)1 с осмием, давая окрашенные продукты некоторые из них экстрагируются хлороформом и другими органическими растворителями Гейлман и Ниб предложили методы определения осмия посредством о,о -дитолилтиомочевины (красный продукт) и 1,4-дифенил-тиосемикарбазида (фиолетовый продукт). Ниже описан ход анализа осмия при помощи первого реагента. Небольшие количества сульфатов, перхлоратов и иона аммония не мешают определению. Сульфиты и нитраты должны отсутствовать. Палладий, родий и рутений дают окрашенные, экстрагирующиеся хлороформом продукты. Иридий и платина совсем не дают или дают слабую окраску и поэтому могут присутствовать в небольших количествах. 1,4-Дифенилтиосемикарбазид является лучшим реагентом в случае, если осмий определяют в присутствии родия и небольших количеств рутения Ни<0,10з). [c.635]

    Освоение эффекта Мёссбауэра позволило проводить измерения в пределах 15-го знака. Метод основан на взаимодействии в определенных условиях гамма-квантов с атомными ядрами. Возможность использования этого достижения в химическом анализе уже показана на примере определения олова. Теоретически оправдано применение данного метода для аналитического определения следующих элементов железа, никеля, цинка, германия, мышьяка, рутения, сурьмы, теллура, иода, ксенона, цезия, гафния, тантала, вольфрама, рения, осмия, иридия, платины, золота, таллия, многих лантаноидов и актиноидов. Можно ожидать появления приборов, в датчиках которых используется высокая чувствительность твердых веществ к неуловимым следовым количествам реагирующих о ними веществ. Ведь при хемосорбции всего нескольких сотен атомов последних свойства твердого тела заметно изменяются, Сверхвысокочувствитмьными датчиками могут служить некото [c.11]

    Сорбционные методы можно применять также для концентрирования, разделения и определения благородных металлов (серебра, золота, металлов платиновой группы — рутения, осмия, родия, иридия, палладия, платины), содержащихся в малых количествах в природных водах и в различных растворах. При этом происходит концентрирование определяемого металла из большого объема раствора в небольшой массе сорбента за счет сорбции соединений этого металла на сорбенте. Сорбентами служат органические полимеры, силикагели, химически модифицированные ионообменными или комгаексообразующими группами (четвертичными аммонийными и фосфониевыми основаниями, производными тиомочевины), привитыми на поверхности силикагеля. [c.236]

    Единственными хорошо изученными оксифторидами являются оксифториды осмия и рутения, несмотря на то что суш ествует также по крайней мере один оксифторид платины. Сообш,ение Раффа и Фишера [24] о синтезе оксифторида иридия IrOF4 оказалось неверным [10]. Связи кислород —рутений и кислород-осмий прочные. Приблизительная энергия двойной связи, рассчитанная из термодинамических данных [1, 60], составляет соответственно 124 и 107 ккал. Эти энергии сопоставимы с величиной 123—125 ккал для связи М—F в WF и MoFe[60]. Возможно, чем тяжелее элемент в каждом ряду, тем слабее его связь с кислородом. Окислы тяжелых элементов определенно менее устойчивы при высоких температурах, чем окислы рутения и осмия. [c.409]

    При обычном анализе трудно смешать линии индия с линиями других элементов [215]. Однако при определении индия по линии 1п 4511, 3 А можно обкидать помех за счет близлежащей линии алюминия (особенно при возбуждении в искре), хрома, платины и рутения, а также от более слабых линий ванадия и очень слабых линий марганца и магния (особенно при возбуждении в искре). При небольшой дисперсии спектрографа следует принять во внимание также линии меди и свинца (главным образом при возбуждении в дуге), молибдена, титана, вольфрама, а также более слабые линии кальция и осмия. Алюминий и бериллий вызывают на месте этой линии сильный фон. Яркие мешающие линии Ве 4513,3 А и Т1 4512,7 А. [c.203]

    Большое значение имеют исследования структуры поверхности катализаторов. Согласно теории А. А. Баландина катализ происходит только при структурном и энергетическом соответствии реагирующих молекул данному катализатору (1929 г.). А. А. Баландин предсказал, что реакции каталитического гидрирования бензола и дегидрирования циклогексана могут идти только на переходных металлах, имеющих гранецентрированную кубическую структуру или гексагональную структуру и притом атомные радиусы строго определенных размеров. Шестичленные циклы образуют на октаэдрических гранях кристаллов металла шесть связей, валентный угол которых близок к тетраэдрическому углу. Этими условиями обладают п-алладий, платина, иридий, родий, осмий. Предсказание А. А. Баландина полностью подтвердилось. Другие металлы, имеющие такой же атомный радиус, но иную структуру или такую же структуру, но другой атомный радиус, не проявили каталитической активности в упомянутых реакциях. [c.54]

    Баландин разработал теорию дегидрогенизационного катализа, исходя из той же основной идеи, на которой построена пространственная теория катализа, предложенная Langnmir OM, Adkins oM и Вигк ом. Согласно этой теории, каталитическая дегидрогенизация имеет место тогда, когда группа атомов на поверхности катализатора, расположенных известным образом и обладающих необходимой активностью, адсорбирует реагирующее вещество в определенным образом ориентированном положении. В связи с тем, что здесь имеет место одновременное действие целой группы атомов поверхности катализатора, упомянутая теория получила название теории мультиплетов . Платина, палладий, иридий, родий, медь, кобальт, никель, железо, цинк, осмий и р утений являются активными катализаторами они обладают структурой, отвечающей этим условиям. [c.102]

    Этот способ разделения обычно применяют для анализа смесей, которые могут быть богаты иридием, но содержат лишь ничтожные количества осмия и рутения. В некоторых случаях предотвращают выделение иридия вместе с платиной, восстановив его предварительно до трехвалентного состояния, а иногда обе соли осаждают совместно, с целью отделения их от палладия и родия. Родий, который в солянокислом растворе всегда находится в трехвалентном состоянии, и палладий (II) не образуют нерастворимых двойных солей с хлоридом аммония, но они увлекаются солью платины, причем родий с исключительным постоянством. С другой стороны, достигнуть этой реакцией количественного осаждения платины фактически невозможно. Лишь продолжительная обработка большим избытком хлорида аммония приводит к почти количественному выделению хлороплатината аммония, но это способствует также соосаждению других металлов. Таким образом, количественно отделить платину в виде хлороплатината аммония от других металлов платиновой группы практически не представляется возможным, хотя результаты определения платины иногда бывают близки истинным за счет взаимной комненЬации ошибок.  [c.411]

    С успехом применять спланление анализируемого материала с десятикратным количеством свинца при 900—1000° С. Избыток свинца и сплавы свинца с платиной, родием и палладием растворяют последовательной обработкой азотной кислотой, а затем разбавленной царской водкой. Иридий не образует сплава со свинцом и не растворяется в царской водке, но он загрязняется рутением, железом и, возможно, осмием, если эти элементы присутствуют в сплаве. Подробный ход выполнения этого исключительно точного разделения приведен в разделе Методы определения (стр. 416). Способ этот применим также к анализу губок, состоящих из платины и иридия. Наличие цинка, который мо г быть введен, например, для выделения платиновых металлов из раствора, приводит к растворению некоторого количества иридия. [c.412]

    Тионалид с элементами платиновой группы и золотом образует труднорастворимые устойчивые соединения, которые принадлежат к классу внутрикомплексных соединений [72, 74]. Осадки, образуемые тионалидом с металлами, имеют во многих случаях определенный состав и устойчивы к нагреванию, что позволяет использовать их в качестве весовой формы. Высокий молекулярный вес выделяющихся соединений дает возможность определять малые количества элемента. В анализе платиновых металлов и золота тионалид применяется для весового определения платины палладия, родия,. иридия, рутения, осмия и золота и для объемного определения родия. Известен нефеломет-рический способ определения палладия и золота этим реагентом. [c.66]

    Чувствительность реакции 1,5-10 мкг Р61мл. Определению мешают иодид-ионы, а также рутений, осмий и платина, которые являются катализаторами указанной реакции. Однако для них эта реакция менее чувствительна. [c.78]

    Тетраметилдиаминтрифенилметан (лейкооснование малахитовой зелени). При добавлении к раствору, содержащему [1гС1б] , нескольких капель 1 %-ного раствора реагента в концентрированной уксусной кислоте происходит окисление лейко-соединения и возникает сине-зеленая окраска малахитовой зеленой. Чувствительность реакции 0,2 мкг/мл. Мешают определению хлор и другие окислители, золото (III), палладий (IV). Не мешают определению платина, палладий (II), родий (III) и осмий (IV). Это — одна из чувствительных реа-кций на иридий [41]. Окрашенное соединение экстрагируется хлороформом. [c.81]

    Если в анализируемой пробе присутствует H2SO4, раствор-следует прокипятить с концентрированной НС1, прежде чем добавлять хлористое олово. Для сравнения используют чистый реактив. Родий может быть определен хлористым оловом в присутствии равных и меньших количеств иридия. Фотоколоримет-рическому определению мешают платина, палладий, рутений, осмий, хром и золото не мешают медь, никель, кобальт. [c.169]

    Определение рутения в виде глюконата [353]. Для количественного определения используют волну восстановления глюконата рутения (III), полученного в щелочной среде. Метод рекомендуется для определения от 1 10 до 5- 10 М рутения. Мешают определению платина и оомий (VI) не мешают малые количества палладия и осмия (IV) родий и иридий не мешают при их избытке. [c.198]

    Пробирный анализ —самый распространенный метод, применяемый лри определении благородных металлов в рудах и продуктах металлургического передела (4, 6—12]. Этот метод позволяет брать для анализа большие навески (1до2 г] и относительно легко и быстро отделять небольшие количества платиновых металлов и золота от породы и примесей. Метод основа на плавке исследуемых материалов в тиглях из огнеупорной глины с сухими реактивами, содержащими металл— коллектор благородных металлов и флюсы, состав которых меняется в зависимости от состава исходного материала. В качестве коллекторов золота, платины и палладия используютчаще всего сви- нец и серебро [12—16]. Коллектирование родия, иридия, рутения и осмия свинцом и серебром представляет значительно ббльшие трудности [10, 17—22], так как эти металлы легко образуют устойчивые при высокой температуре окислы (а рутений и осмий—летучие окислы), а также соли, многие из которых разлагаются только при высокой температуре. Однако родий и иридий довольно легко образуют сплавы с платиной и палладием, что облегчает их сплавление со свинцом и удерживание в сплаве с серебром [13], Для концентрирования платиновых металлов применяют также плавки навесок бедных материалов с ферроникелем [23—30], медью [31, 32] и оловом [33]. [c.251]


Смотреть страницы где упоминается термин Платина определение от осмия: [c.431]    [c.426]    [c.571]    [c.151]    [c.54]    [c.172]    [c.76]    [c.54]    [c.415]    [c.738]    [c.140]    [c.200]    [c.291]   
Химико-технические методы исследования (0) -- [ c.360 ]




ПОИСК





Смотрите так же термины и статьи:

Окисление гипофосфит-иона никелем (II) (определение рутения, осмия, палладия и платины)

Осмий

Осмий определение

Осмий осмий

осмий платину



© 2025 chem21.info Реклама на сайте