Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нуклеофильное присоединение альдегидов

    Альдегиды и кетоны. Строение карбонильной группы. Изомерия и номенклатура. Способы получения. Химические свойства. Реакции нуклеофильного присоединения. Реакции замещения и окисления. Функциональные производные оксосоединений ацетали, оксимы, гидразоны, азины. Альдольная и кротоновая конденсации. Дикарбонильные соединения. Непредельные альдегиды и кетоны. Кетены. УФ и ИК спектры альдегидов и кетонов. [c.170]


    Скорость нуклеофильного присоединения тем выще, чем больше положительный заряд на атоме углерода в карбониле. Увеличение или уменьшение этого заряда зависит от природы заместителей, связанных с углеродом карбонильной группы. Известно, что электроноакцепторные (электрофильные) заместители увеличивают этот заряд и тем самым способствуют присоединению нуклеофильных реагентов. Наоборот, электронодонорные (нуклеофильные) заместители понижают положительный заряд на углероде за счет смещения в его сторону электронной плотности, затрудняя при этом такое присоединение. Например, уксусный альдегид будет проявлять меньшую активность в реакциях нуклеофильного присоединения, чем его трихлорзамещенный аналог — хлораль  [c.127]

    Нуклеофильное присоединение к карбонильной группе Присоединение воды, спиртов, тиолов, аммиака и его производных, синильной кислоты, реактивов Гриньяра, бисульфита натрия. Полимеризация альдегидов 76 [c.4]

    Лучшим способом получения альдегидов из ацетиленов является нуклеофильное присоединение алкокси-иона с образованием винилового эфира, который затем можно гидролизовать в альдегид [c.66]

    Такая поляризация двойной связи определяет значительный электрический момент диполя карбонильной группы, который равен 0,899-10 Кл-м. Все это является причиной высокой реакционной способности альдегидов и кетонов, которая проявляется прежде всего В реакциях нуклеофильного присоединения. [c.126]

    Реакции нуклеофильного присоединения альдегидов и несимметричных кетонов приводят к образованию соединений, содержащих хиральный атом углерода. Карбонильная группа (С=0) имеет плоское строение, она доступна для атаки сверху и снизу в направлении, перпендикулярном ее плоскости. Если альдегид (кетон) и нуклеофильный реагент не имеют хиральных атомов углерода, продукт присоединения получают в виде рацемической модификации. [c.127]

    Другой тип нуклеофильного присоединения — это присоеди- ение нуклеофильных карбанионов, образующихся при взаимодействии сильных оснований с карбонильными соединениями. На следующем этапе происходит уже присоединение карбанионов к исходным карбонилам. Эта реакция называется аль- дольной конденсацией, а ее значение определяется тем, что, подобно реакции Гриньяра (разд. 6.2.2.2), она приводит к удлинению углеродно чени. Рассмотрим эту реакцию на примере уксусного альдегида  [c.160]

    Наиболее типичными для альдегидов являются реакции нуклеофильного присоединения но карбонильной группе, которые подвержены кислотному или основному катализу. Кислота-катализатор координируется по атому кислорода карбонильной группы, несущему дробный отрицательный заряд, усиливает поляризацию карбонильной группы и облегчает атаку нуклеофила. Основание-катализатор повышает активность реагента, образуя на его основе нуклеофильную частицу  [c.87]


    Реакция. 1. Синтез вторичного спирта нуклеофильным присоединением металлоорганического соединения по карбонильной группе альдегида (реакция Гриньяра применение магнийорганических соединений). [c.513]

    При взаимодействии Л. Л -диалкиламидов или солей карбоновых кислот с реактивами Гриньяра реакция останавливается на стадии нуклеофильного присоединения с образованием аддукта (51). Это объясняется тем, что вытеснение реактивом Гриньяра на второй стадии реакции такого аниона, как, например, М(СНз)2. чрезвычайно энергетически невыгодно. Вследствие этого диалкиламиды и соли карбоновых кислот иногда используют как исходные вещества при синтезе альдегидов и кетонов  [c.296]

    В молекулах альдегидов с атомом углерода карбонильной группы связаны два атома водорода или один атом водорода и одна алкильная группа, а в молекулах кетонов — две алкильные группы. Химические свойства альдегидов и кетонов определяются наличием карбонильной группы, которая способна к нуклеофильному присоединению, потому что на атоме углерода имеется частичный положительный заряд (разд. 3,6), [c.157]

    Образование фенилгидразонов — одна из типичных реакций замещения по карбонильной группе, идущих через стадию нуклеофильного присоединения. Эта реакция используется для идентификации альдегидов и кетонов и для выделения карбонильных соединений из смесей. [c.132]

    Расположите указанные ниже соединения в ряд по уменьшению их способности вступать в реакции нуклеофильного присоединения а) бензальдегид б) муравьиный альдегид в) пропионовый альдегид г) ацетон д) ацетофенон е) бензофенон  [c.177]

    Вполне естественно, что большинство свойств альдегидов и кетонов сходны. Однако по соседству с карбонильной группой в альдегидах находится атом водорода, а рядом с карбонильной группой кетонов — два органических радикала. Это различие в структуре обусловливает различие в свойствах а)альдегиды довольно легко окисляются, в то время как кетоны окисляются лишь с трудом б) альдегиды обычно более активны, чем кетоны, в реакции нуклеофильного присоединения — характерной реакции карбонильных соединений. [c.587]

    Это нуклеофильное присоединение к сг,р-ненасыщенным карбонильным соединениям (называемое реакция Михаэля ) не ограничивается кислотами, оно вообще характерно для а, 1-не-насыщенных сложных эфиров, кетонов, альдегидов, а также нитрилов. На самом деле а,р-ненасыщенные кислоты реагируют труднее, чем их эфиры или нитрилы, поскольку в используемых условиях карбоксильная группа обычно превращается в анион (наиболее сильные нуклеофилы являются также основаниями), который, будучи отрицательно заряженным, менее чувствителен к нуклеофильной атаке, чем незаряженная частица. Однако производные карбоновых кислот реагируют легко, например  [c.256]

    Нуклеофильное присоединение анилина к акролеину, приводящее к Р-(фениламино)пропионовому альдегиду [c.1030]

    РЕАКЦИИ НУКЛЕОФИЛЬНОГО ПРИСОЕДИНЕНИЯ К КАРБОНИЛЬНОЙ ГРУППЕ АЛЬДЕГИДОВ И КЕТОНОВ [c.1254]

    Вторичный спирт из альдегида по реакции Гриньяра (нуклеофильное присоединение) [c.633]

    Поскольку альдегиды и кетоны рассматриваются здесь раньше, чем в предыдущем издании, то химии карбонильных соединений посвящены две главы сначала обсуждены синтез и простое нуклеофильное присоединение, а затем — химия карбанионов. [c.7]

    Альдегиды, как правило, легче вступают в реакцию нуклеофильного присоединения, чем кетоны. Это различие в реакционной способности согласуется с характером промежуточного состояния реакции и, по-видимому, объясняется совместным действием электронных и пространственных факторов. Кетон содержит вторую алкильную или арильную группу, а альдегид — атом водорода. Вторая арильная или алкильная группа кетона больше, чем атом водорода в альдегиде, и поэтому она в большей степени будет препятствовать увеличению пространственной затрудненности в переходном состоянии. Алкильная группа подает электроны и тем самым дестабилизует переходное состояние за счет усиления отрицательного заряда на кислороде. [c.600]

    Различная реакционная способность альдегидов и кетонов сильнее всего сказывается в отношении к окислителям альдегиды легко окисляются при действии таких слабых окислителей, как оксид серебра и гидроксид меди (Г1), кетоны окисляются только сильными окислителями, такими, как перманганат калия, хромовая кислота и др., при нагревании. Для альдегидов и кетонов характерны реакции нуклеофильного присоединения по карбонильной группе. Продукты присоединения в ряде случаев отщенляю воду и реакция по результатам вьп лядмт как реакция замещения. [c.48]

    Мы также уже познакомились отчасти с тем, в чем состоит роль карбонильной группы по этой группе происходят реакции нуклеофильного присоединения — типичные реакции альдегидов и кетонов. Теперь мы рассмотрим другой аспект вопроса о роли карбонильной группы, а именно каким образом карбонильная группа увеличивает кислотность атомов водорода, находящихся в а-положении к карбонильной группе, в результате чего становится возможным осуществление ряда химических реакций. [c.810]


    Таким образом, склонность а,р-непредельных соединений к реакциям нуклеофильного присоединения определяется не просто присутствием электроноакцепторной карбонильной группы, а наличием сопряженной системы, допускающей образование резонансно-стабилизованного аниона I. а,р-Непредельные альдегиды, кетоны, кислоты, эфиры и нитрилы находят широкое применение в синтезах, поскольку они содержат подобную только что описанной сопряженную систему. [c.920]

    Реакции нуклеофильного присоединения. Альдегиды и кетоны, обладая электрофильным центром, способны вступать во взаимодействие с нуклеофильными реагентами. Для оксосоединений наиболее характерны реакции, протекающие по механизму нуклеофильного присоединения, обозначаемому А/ (от англ. addition nu leophili ). [c.371]

    Восстановление посредством нуклеофильного присоединения. Альдегиды и кетоны очень легко восстанавливаются как LiAlH , так и NaBH . [c.489]

    Для альдегидов и кегонов наиболее 1иличными. являются реак-тщи нуклеофильного присоединения по двогаой связи карбонила, причем атаке подвергается атом углерода. [c.73]

    Реакции нуклеофильного присоединения. Реактивы Гриньяра способны взаимодействовать как нуклеофилы с карбонильными соединениями. Поскольку на атоме углерода в карбонильном соединении имеется значительный дефицит электронной плотности, обусловленный различием в электроотрицательности атомов углерода и кислорода и поляри.чуемостью кратной связи, реактив Гриньяра легко атакует его как нуклеофил, образуя новую углерод-углеродную связь. Так, при взаимодействии с формальдегидом и последующем гидролизе образуются первичные спирты, с остальными альдегидами — вторичные, а с кетонами — третичные спирты  [c.277]

    Расположите следующие соединення в ряд по увеличению их склонности к реакциям нуклеофильного присоединения 1) изомасляный альдегид, 2) этилпро-пилуксусный альдегид, 3) ацетон, 4) уксусный альдегид, 5) метилэтилкетон. [c.61]

    Для альдегидов и кетонов наиболее типичными являются реакции нуклеофильного присоединения по двойной связи карбоншш, причем атаке подвергается атом углерода. [c.73]

    Охарактеризуйте влияние заместителей в бензольном кольце на реакционную способность ароматических альдегидов и кетонов в реакциях нуклеофильного присоединения. В каждой паре укажите наиболее активное соединение а) бензальдегид и rt-толуиловый альдегид б) п-толуиловый альдегид и и-метокси-бензальдегид в) ацетофенон и п-нитроацетофенон г) бензофенон и п-диметиламинобензофенон д) бензофенон и 2,2 -диметилбен-зофенон. [c.177]

    Возможность восстановления амидов с образованием альдегидов зависит от структуры амида и гидрида, а также от условий реакции. Иногда бывает достаточно смешивать реагенты в обратном порядке при низкой температуре или использовать стехиометри-ческое количество алюмогидрида лития. Но решающую роль играет электронное влияние заместителей при атоме азота. Селективное образование альдегидов из амидов кислот облегчается, если скорость нуклеофильного присоединения по карбонильной группе с образованием аминоалкоголята превышает скорость нуклеофиль- [c.137]

    Реакция. Катализируемое кислотой превращение альдегида (или кетона) в ацеталь (кеталь) взаимодействием со спиртом и эквимольным (+ 10%) количеством ортоэфира. Этот метод находит щирокое применение. Нуклеофильное присоединение спирта но карбонильной группе с образованием полуацеталя сопровождается отщеплением воды в присутствии кислоты с образованием иона карбоксония, к которому присоединяются две молекулы спирта. Эта реакция является равновесной вода, образующаяся в ходе реакции, связывается ортоэфиром. При использовании ионообменной смолы и перемешивании магнитной мешалкой смола размалывается и проходит через фильтр. В таких случаях смесь фильтруют на колонке с силикагелем (размер зерен >0,2 мм, толщина слоя 4 см), промывая колонку эфиром, смесью эфир-метиловый спирт или хлороформ-метанол (предварительно определяют Rj). [c.257]

    Какого рода реагенты будут атаковать такую группу Поскольку важнейшая стадия в этих реакциях — образование связи с электронодефецит-ным (кислым) карбонильным углеродом, то карбонильная группа более всего склонна к взаимодействию с электроноизбыточными нуклеофильными реагентами, т. е. с основаниями. Типичными реакциями альдегидов и кетонов будут реакции нуклеофильного присоединения. [c.599]

    Диокса-5-фосфациклогексаны (342) получают нуклеофильным присоединением фосфина к -разветвленным альдегидам или взаимодействием ароматических альдегидов с фосфином или арил-фосфинами. Они довольно устойчивы к кислотному гидролизу и аутоокислению, что, вероятно, обусловлено стерическимн затруднениями, создаваемыми циклической структурой. [c.658]

    Механизм альдольной конденсации повторяет механизм нуклеофильного присоединения по карбонильной группе. Предполагается, что в качестве нуклеофила выступает ионизированная форма винилового эфира — винилат-анион, который образуется в результате енолизации альдегида и его последующей кислотной диссоциации  [c.241]

    Реакции трансаминирования были изучены в системе, содержащей ПАЛФ, ионы тяжелых металлов и субстраты. Добавление слабого основания к системе, содержащей пиридоксаль и аминокислоту, полностью подавляет все реакции, кроме расщепления Са—Н-связи в такой модели происходит только транс-аминирование [45, 46]. В работе [47] были определены индивидуальные константы скорости для стадии образования альди-мина. Их значения для реакции аминокислоты (глутамата) с анионной, биполярной и катионной формами модельного соединения З-оксипиридин-4-альдегида равны соответственно — — 80,2 моль мин- А бип = 1,12-Ю" моль мин , ккач— = 2,3-10 моль- минг . Константа скорости ферментативной реакции много больще, а именно к= 10 моль минг . Теоретический расчет показывает, что скорость нуклеофильного присоединения к карбонильной группе возрастает в 10 —Ю" раз, если бимолекулярная реакция трансформируется в мономолеку-лярную с надлежащим пространственным расположением взаимодействующих групп [48]. Можно предположить, что фермент обеспечивает такую ориентацию этих групп на всех последовательных стадиях процесса и стабилизует наиболее активные в соответствующих стадиях ионные формы субстратов, коферментов и функциональных групп активного центра [49]. [c.379]


Смотреть страницы где упоминается термин Нуклеофильное присоединение альдегидов: [c.81]    [c.331]    [c.371]    [c.110]    [c.119]    [c.144]    [c.300]    [c.83]    [c.218]    [c.110]   
Органическая химия (1964) -- [ c.272 , c.331 ]

Органическая химия (1964) -- [ c.272 , c.331 ]




ПОИСК





Смотрите так же термины и статьи:

Присоединение нуклеофильное

Присоединение нуклеофильное Нуклеофильное присоединение



© 2025 chem21.info Реклама на сайте