Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изопропиловый спирт основность

    В настоящее время лишь 10% всего метилового спирта получают попутно при сухой перегонке дерева, целевым продуктом которой является металлургический кокс, а 90% — окислением низших углеводородов и гидрированием окиси углерода. Приблизительно 50—60% метилового спирта идет на производство муравьиного альдегида, 20—30% используют в качестве антифриза, остальное —в различных химических производствах или в качестве топлива. Этиловый и изопропиловый спирты используют для получения карбонильных производных уксусного альдегида и ацетона. Из втор-бутилового спирта получают в основном метилэтилкетон. [c.205]


    Хотя основную часть ацетона получают путем окислительного расщепления изопропилбензола, в результате чего образуется не только ацетон, но и фенол, интересно отметить, что одно время большое количество ацетона производили дегидрированием изопропилового спирта. Этот процесс осуществляют в трубчатом реакторе (рис. 2) при 270 20°С на медно-цинковом или серебряном катализаторе. Обычно катализаторами являются эти металлы или их сплавы, нанесенные на огнеупорный материал. [c.152]

    Уже в настоящее время работают устаповки, в которых полностью отсутствуют отходы (например, установка для получения перекиси водорода). Процесс получения перекиси водорода основан на реакции окисления изопропилового спирта кислородсодержащим газом в жидкой фазе в четыре стадии. Установка отличается простотой аппаратурного оформления, удобством обслуживания. Основное оборудование установки может быть расположено на открытой площадке, что ведет к уменьшению средств на строительство (см. 7.1). [c.206]

    Для достижения благоприятных условий образования комплекса необходимо создать возможность взаимодействия карбамида с парафином в гомогенной среде. Но создание таких условий осложняется тем, что основные растворители, хорошо растворяющие парафин, такие, как углеводородные растворители, не растворяют карбамид, а растворители, хорошо растворяющие карбамид (вода, водные низшие спирты), не растворяют парафин. Поэтому для создания условий взаимодействия карбамида и парафина в гомогенной среде к ним приходится подбирать и добавлять растворители или сочетания растворителей, которые в некоторой, хотя бы и небольшой степени растворяли одновременно и парафин и карбамид. Растворителями, более или менее отвечающими данным требованиям, могут служить, например, изобутиловый, изопропиловый спирты, метилэтилкетон, метилизобутилкетон, а также дихлорметан [36] и некоторые другие. Но растворяющая способность этих растворителей, будучи относительно удовлетворительной для нефтяных продуктов и содержа- [c.142]

    Производство изопропилового и бутилового спиртов. Основной способ получения изопропилового спирта — из газов крекинга, содержащих пропилен. Процесс начали применять в 1920 г. [c.202]

    До настоящего времени основное количество ацетона получают все еще дегидрированием изопропилового спирта [13]  [c.141]

    Общие сведения. Изопропиловый и етор-бутиловый спирты в основном применяют для получения каталитическим дегидрированием соответствующих кетонов — ацетона и метилэтилкетона. Производство ацетона в США в 1956 г. составило 250 тыс. т, из которых 230 тыс. т были получены из изопропилового спирта. [c.206]


    Основные опасности и меры предупреждения аварий при производстве перекиси водорода из изопропилового спирта [c.122]

    Основное количество изопропилового спирта используется для получения ацетона, однако оно уменьшается из-за серьезной конкуренции кумольного метода производства ацетона. Если раньше пз изопропилового спирта получали 95% ацетона, то в 1963 г. в США таким путем было получено только 72,6%, а 20,4 % ацетона уже производили через кумол. [c.66]

    Основное применение изопропилового спирта—производство ацетона СНз-СО СНз, являющегося высококачественным растворителем в производстве ацетата целлюлозы (получение искусственного волокна), нитроцеллюлозы (получение взрывчатого вещества—пироксилина, кинопленок, пластических масс, лаков) и пр. [c.16]

    В патентной литературе имеется также описание некаталитического (термического) окисления низших газообразных парафинов, которое проводили при недостатке кислорода в реакторе из металла, устойчивого к действию высоких температур и продуктов реакции [7]. Температура процесса равнялась 400—500°, причем температуру поверхности реактора поддерживали на уровне ниже 200°. Полученные гидроперекиси имели такое же строение, что и гидроперекиси, обнаруженные в только что описанном опыте, однако незначительные изменения в условиях реакции приводили к образованию водного раствора перекиси водорода как основного продукта из числа веществ, содержавших активный кислород. Так, например, при работе со смесью из 90% пропана и 10% кислорода с продолжительностью реакции 5 сек. (температура в реакторе 470°, температура стенки 150°) основным кислородсодержащим продуктом была перекись водорода, полученная в виде 3—4%-ного водного раствора [8]. Этот способ получения перекиси водорода, по-видимому, уступает место прямому окислению изопропилового спирта, в результате которого тоже образуется перекись водорода (см. гл. 8, стр. 150). [c.71]

    Вышеназванные методы еще не применяются для промышленного производства ацетона. В промышленности в основном принято дегидрирование дешевого и легкодоступного изопропилового спирта. Кроме того, ацетон образуется в большом количестве в виде побочного продукта при синтезе кумола. [c.143]

    Основные правила безопасной работы. В процессе окисления изопропилового спирта кислородом воздуха возможно образование в незначительных количествах органических гидроперекисей, которые в неблагоприятных условиях и при случайном скоплении в застойных зонах могут быть опасны. [c.125]

    Пропилен также полимеризуется весьма незначительно при обработке его 96%-ной серной кислотой [59 при атмосферном давлении и ком-, натной температуре. В качестве основного продукта получается изопропил-сульфат, гидролиз которого дает изопропиловый спирт. При обработке пропилена 98 %-ной серной кислотой образуется смешанный полимер. [c.190]

    Основной причиной резкого изменения структуры потребления изопропилового спирта является Ш аз от строительства но -вых установок по производству ацетона из изопропанола, а также [c.49]

    Для сопоставления ниже приводятся основные характеристики сернокислотного метода производства изопропилового спирта  [c.227]

    В этих реакциях образуется некоторое количество воды и 2-фенил-изопропилового спирта, однако они являются побочными продуктами, и в основном в системе накапливается гидроперекись изопропилбензола. С ростом концентрации гидроперекиси увеличивается скорость реакции (VI 11.79), т. е. скорость зарождения цепей. Вследствие этого возрастает и скорость накопления гидроперекиси, т. е. реакция развивается с ускорением. Ускорение прекра- [c.333]

    Глава VII посвящена реакции гидратации олефинов. В основном здесь рассматривается получение этилового и изопропилового спиртов. Кратко рассмотрены и другие реакции присоединения к олефинам различных неор- [c.5]

    Этилен был и фактически все еще продолжает быть наиболее важным в промышленном отношении олефином. Хотя и считается, что первым нефтехимическим продуктом был изопропиловый спирт, который производили в ограниченном масштабе уже в 1919—1920 гг., характерной чертой этого периода являлось внедрение в промышленность производных окиси этилена и создание прочной и испытанной базы для их получения. Эти химические продукты нашли новые применения в основном в автомобильной промышленности. На основе этиленгликоля был создан первый стабильный антифриз. [c.19]

    В настоящее время изопропиловый спирт, преобладающий в продуктах химической переработки пропилена (57,8%), является исходным сырьем для производства многих весьма важных промышленных продуктов, основным из которых является ацетон. В 1956 г. около 450 тыс. т пропилена было превращено в изопропиловый спирт и 82% всего ацетона, производимого в США, было получено дегидрированием этого спирта [19]. [c.22]

    Основным способом получения ацетона из сырья нефтяного происхождения является окисление изопропилового спирта (гл. 8, стр. 150). Точно такими же способами, какими первичные спирты могут быть превращены в альдегиды, а именно дегидрированием или окислением воздухом (гл. 16), вторичные спирты можно перевести в кетоны. [c.314]


    Отделение Сз-углеводородов ректификацией от j- и С4-углеводородов происходит легко и практически не представляет никаких затруднений. Поэтому в одинаковой степени легко выделить пропан-пропиленовый концентрат из отходящих газов колонн стабилизации или из крекинг-газов, полученных любым методом. Такой концентрат пригоден для получения основного продукта химической переработки пропилена — изопропилового спирта [гидратация пропилена в изопропиловый спирт описана в гл. 8, стр. 148]. Однако для производства целого ряда других продуктов, число которых все время возрастает, требуется чистый пропилен, в связи с чем возникает задача отделения его от пропана. С помощью простой ректификации этого достигнуть нелегко, так как относительная летучесть пропилена из смесей с пропаном составляет при 3 ата и —20 всего лишь 1,15. С повышением давления это отношение несколько уменьшается чтобы избежать низких температур и использовать для конденсации газов водяное охлаждение, пропан-пропиленовую фракцию необходимо разгонять под давлением не менее 15 ата. Несмотря на все это, можно без особых затруднений осуществить в большом масштабе получение 98%-ного пропилена [13, 32]. Разделение пропилена и пропана происходит пегче, если применить азеотропную перегонку в присутствии чммиака [32] аммиак изменяет отношение давлений паров пропилена и пропана, увеличивая относительную летучесть пропана. [c.126]

    В первом испарителе выделяются неомыляемые и остатки бек-зина, во втором — основное количество изопропилового спирта, в третьем и четвертом выпаривается вода. [c.82]

    Изопропиловый спирт можно получить всеми общими способами синтеза спиртов. Однако в основном изопропиловый спирт получают в промышленности сернокислотной гидратацией пропилена. [c.106]

    В статье Стермана и Стюшина [100], опубликованной в 1952 г., приведены значения критических тепловых потоков при кипении жидкости в трубах. Исследование проводилось на изопропиловом спирте. Основная цель работы — установление влияния скорости циркуляции. [c.121]

    СН2ОН и СНз—СНОН—СНз. Первичный кипит при 97°,2 вторичный (изопропиловый) — при 82°,4. В технике наибольшее значение приобрел изопропиловый спирт. Основное количество изопропилового спирта перерабатывается в ацетон. Частично изопропиловый спирт применяется в парфюмерии вместо этилового. [c.143]

    Пропиловые спирты, пропанолы, С3Н7ОН. Пропиловых спиртов известно два первичный и вторичный СНз—СНг—СН2ОН и СНз—СНОН—СНз. Первичный кипит при 97°,2 вторичный (изопропиловый) — при 82°,4. В технике наибольшее значение приобрел изопропиловый спирт. Основное количество изопропилового спирта перерабатывается в ацетон. Частично изопропиловый спирт применяется в парфюмерии вместо этилового. [c.133]

    Катализаторы окисления спиртов. Основным требованием, предъявляемым к катализаторам окисления спиртов в альдегиды и кетоны, является высокая селективность. Из всех катализаторов, имеющих промышленное значение, наибольшей эффективностью отличаются серебро (крупнокристаллическое и нанесенное) и окисный железо-молибденовый катализатор [46, 65]. Серебряные катализаторы применяются для окисления метанола в формальдегид, этанола в аиет-альдегид, изопропилового спирта в ацетон, аллилового спирта в акролеин, циклогексанола в циклогексанон и др. Катализаторы готовят либо в виде сеток из серебряной проволоки, либо нанесением на инертный носитель (пемза, корунд, карборунд и др.). Окисные железо-молибденовые катализаторы используются при окислении метанола и этанола, особенно эффективны для получения формалина с низкой кислотностью. [c.415]

    Природа электрода, так же как и сгепень развития его поверхности, играет важную роль в кинетике процессов электрохимического восстановления и окисления особенно отчетливо это проявляется в случае сложных окислительно-восстановительных реакций. Например, при восстановлении азотной кислоты на губчатой меди получается почти исключительно аммиак, а на амальгамированном свинце — преимущественно гидроксиламин. Другим примером влияния материала электрода на процесс электровосстановления может служить реакция восстановления ацетона. В результате этого процесса получаются два основных конечных продукта — изопропиловый спирт СН3СНСН3 и пннакон (СНзСОНСНз)2. [c.432]

    Заряд поверхности не только тесно связан с эффективно-стью реакции электровосста-новления, но во многих случа-ях определяет также характер получаемых продуктов. Например, при электровосстановлении ацетона могут получаться два основных конечных продукта изопропиловый спирт и пинакон. Учитывая, что по от- [c.448]

    При пиролизе изопропилпитрита [162] основными продуктами реакции являются ацетон+ N0 вместе с изопропиловым спиртом и СН3СНО. В меньших количествах образуются H N и Н2О. [c.364]

    Активаторы. Для образования комплекса непосредственное механическое смешение депарафинируемого нефтяного продукта с карбамидом и поверхностный контакт недостаточно эффективны. Необходим теСный контакт реагирующих продуктов. Это объясняется нерастворимостью карбамида в нефтепродуктах. Очень тонкое и интенсивное истирание карбамида с нефтепродуктом такке не дало положительного результата - образовавшийся комплекс разлагался. Хорошее взаимодействие карбамида с парафином возможно лишь при создании для них гомогенной среды. Однако основные растворители, хорошо растворяющие парафин (например, углеводородное), не растворяют карбамад, а растворители, хорошо растворяющие карбамид (вода, низшие спирты), не растворяют парафин. Растворителями, которые одновременно растворяют парафин и карбамид, могут в известной мере служить изопропиловый спирт, метил-этилкетон, метилизобутилкетон, хлористый метилен, дихлорэтан и другие. Однако удовлетворительная растворяющая способность этих растворителей для нефтяных продуктов и содержащегося в них парафина остается невысокой для карбамида. [c.73]

    Распределение компонентов в экстракте, в основном, определяется равновесием в системе изопропиловый спирт — моноизопропилсулы )ат — серная кислота (табл. 7.3). При температуре выше 50 °С равновесие устанавливается настолько быстро, что моноизопропилсульфат быстрее превращается в спирт, чем последний удаляется из раствора. Изопропиловый спирт образует межмолеку-лярные связи с серной кислотой, вследствие чего существенно снижается давление его паров. Добавление небольшого количества воды к экстракту увеличивает давление паров спирта и соответственно повышает его выход. [c.225]

    Реакция, известная как гидроформилирование, может быть осуществлена для смеси СО и Нг в присутствии сложного кобальтового катализатора при манометрическом давлении 3447 кПа и температуре 165 °С. Основным продуктом является 1-бутанол при использовании в качестве катализатора КОН получается 2-этилгексанол. Изопропиловый спирт из пропилена может быть получен по двустадийной схеме сульфинация посредством 85 %-ной серной кислоты при давлении 2068 кПа и температуре 25 °С с последующей гидратацией образующихся моно- и диизопропил сульфатов. [c.44]

    Основной продукт, получаемый в результате реакций с пропиленом,— изопропиловый спирт (изопр.опанол). Те.хнология полимеризации пропилена для производства полиолефиновых пластмасс относительно молода, однако масштабы ее увеличиваются очень быстро. Следует ожидать, что в ближайшем будущем она станет основной при переработке пропилена. [c.236]

    Присадка Найк (Афен) состоит из амида полиэтиленполиа-мина ТУ 6—02—594—75 на основе фракции синтетических жирных кислот С —С Д10—20%), оксиэтилированного алкилфе-нола ОП-7 ГОСТ 8433-65 (10—20%) и комплексного растворителя (ксилолы + изопропиловый спирт 1.1). Амид является основным носителем моющих, защитных и антиобледенительных свойств присадки. ОП-7 является стабилизатором раствора амида и, обладая моющими свойствами, усиливает действие амида. Ксилолы и изопропиловый спирт в смеси представляют собой активный растворитель, усиливающий антиобледенитель-ный эффект. [c.367]

    ФОП и ХОП из образцов растительного происхождения извлекают ацетонитрилом [54 и ацетоном [55,56] Установлено, что для извлечения пестицидов из растений, содержащих большие количества восков и липидов, лучше применять ацетон, а для образцов с большим содержанием пигментов - смесь гексана с изопропиловым спиртом (1 1). При экстракции пестицидов из почв используют ацетон, метанол, этилацетат, ацетонитрил и хлороформ [54,57-60]. Присутствующая в почвах вода, как правило, ослабляет силы адсорбционного удерживания пестицидов из-за процессов гидратации. Поэтому перед их извлечением почву рекомендуется хорошо увлажнить водой или обработать растворами кислот (щелочей), Поскольку при извлечении пестицидов в органический растворитель обычно переходят их гидратированные формы, то используют хорошо растворимые в воде растворители (метанол, ацетон, ацетонитрил и др,) или смеси с неполярными жидкостями, тогда как при экстракции из воды в основном применяются последние. Важно подчеркнуть, что степень извлечения органических компонентов из твердых образцов сильно зависит от прочности их связей с белками и другими составляю 1цими исследуемых субстратов [c.212]

    Для большой группы процессов электрогидрирования предполагается наличие параллельных реакций, протекающих, вероятно, через различные состояния адсорбированных частиц в соответствии со схемой (8.4). Например, при изучении электровосстановления ацетона на платине, иридии и платиново-иридиевых катализаторах (А. Д. Семенова, Н. В. Кропотова, Г. Д. Вовченко) было обнаружено, что на платине скорости электрогидрирования как хегйосорбированного вещества, так и ацетона при присутствии его в растворе близки и приводят к образованию одинаковых продуктов — в основном пропана. В небольших количествах найдены этан и метан, а также изопропиловый спирт. На иридии скорость электрогидрирования прочно хемосорбированного вещества существенно ниже скорости электровосстановления ацетона. Кроме того, из прочно хемосорбированного вещества получается главным образом пропан, тогда как при наличии ацетона в растворе основным продуктом электрогидрирования является изопропиловый спирт. На смешанных платиново-иридиевых катализаторах с ростом содержания иридия происходит постепенный переход от закономерностей, характерных для платины, к типичным для иридия. [c.281]

    Если протяженности шкал кислотности pKs каждого индивидуального растворителя одинаковы, а кислотно-основной их характер различен, например один из растворителей является амфипротным, а другой проявляет кислый характер, то положение шкалы кислотности смеси по мере прибавления протогенного растворителя смещается в кислую область за счет уменьшения основного предела амфипротного растворителя. Такое явление наблюдается при смешивании изопропиловый спирт — нитрометан трет-бутиловьгй спирт — нитробензол. [c.429]

    В случае прибавления к амфипротному растворителю протофиль-ного, проявляющего основной характер, положение шкалы кислотности смеси по мере прибавления основного растворителя смещается в основную область за счет уменьшения кислого предела амфипротного растворителя. Например, такой процесс протекает при смешивании изопропиловый спирт — пиридин ацетон — диметилсульфоксид и др. [c.429]

    Несмотря на принятые предосторожности при подготовке образцов к исследованию (промывки последовательно изопропиловым спиртом, ацетоном, эфиром, сушка при 50° С с кратковременным вакуумированием, защита образцов от карбонизации) получить из гермограмм количественные данные о фазовом составе новообразования не представляется возможным, в основном, по двум причинам неоднозначности трактовки эндоэффекта в интервале 290— 310°, в который могут дать вклад два гидрата — гексагональный СгАНв и начавший образовываться СдАНв, а также сложности воспроизведения условий теплообмена при гидратации образцов различной массы. Для изучения сорбционных свойств образцы СзА подвергались более глубокой сушке при 120° С с вакуумированием до Ю мм рт. ст., в результате которой должна была удалиться [c.94]


Смотреть страницы где упоминается термин Изопропиловый спирт основность: [c.305]    [c.224]    [c.195]    [c.98]    [c.432]    [c.193]    [c.16]    [c.37]    [c.36]   
Общая органическая химия Том 2 (1982) -- [ c.19 , c.321 ]

общая органическая химия Том 2 (1982) -- [ c.19 , c.321 ]




ПОИСК





Смотрите так же термины и статьи:

Изопропиловый спирт

Спирты Изопропиловый спирт



© 2024 chem21.info Реклама на сайте