Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хлор, реакции присоединения и замещения

    Образование выровненной системы связей обусловливает ароматический характер этих соединений. Он проявляется в высокой устойчивости к окислению, склонности к реакциям замещения при малой активности в реакциях присоединения. При этом наличие в структуре ароматических соединений легко поляризуемого 6 р -электронного облака делает их весьма активными в реакциях с катионоидными (электрофильными) реагентами. Так, при взаимодействии бензола с хлором в присутствии катализатора легко происходит замещение атома водорода в бензоле хлором  [c.146]


    Хотя реакция присоединения хлора к олефинам была открыта еще в 1795 г., однако промышленное значение получило оно лишь в начале нашего века. В настоящее время в крупных промышленных масштабах осуществлено хлорирование этилена, пропилена, ацетилена и других ненасыщенных углеводородов. Получаемые при этом 1,2-дихлорэтан, 1,2-дихлорпропан, 1,1,2,2-тетрахлорэтан находят широкое применение в качестве растворителей, фумиганта и полупродуктов в синтезе таких важных соединений, как хлорвинил, этилен-диамин, трихлорэтилен и т. д. Присоединение галогенов к олефинам и ацетилену сопровождается образованием продуктов дальнейшего замещения водорода на хлор и другими реакциями. [c.133]

    Головные погоны, поступающие в сборник 21, состоят из хлористого этила, хлористого винила и ненасыщенных углеводородов, которые вследствие образования азеотропной смеси уже не могут быть разделены перегонкой. Их подвергают дополнительному хлорированию, протекающему уже не как реакция замещения, а как реакция присоединения хлора. При этом ненасыщенные компоненты смеси превращаются в более высококипящие хлориды, вследствие чего их можно отделить от хлористого этила ректификацией. [c.175]

    Индуцированное хлорирование с замещением атомов водорода. При хлорировании олефина одновременно с реакцией присоединения происходит замещение водорода хлором в продукте присоединения хлора. Поскольку в отсутствии олефина дихлориды не хлорируются с замещением атома водорода хлором, то реакция замещения рассматривается как индуцированная реакция. Индуцированная реакция хлорирования ин-гибитируется кислородом, а следовательно, очевидно, развивается как цепная реакция. При хлорировании смеси парафина и олефина хлор, присоединяется к олефину и одновременно водород замещается хлором у парафина. Реакция изучалась для пропан-пропиленовой и бутан-бутиленовой смесей. Газообразные олефины в темноте при температуре ниже 150° реагируют с хлором лишь медленно или совсем не реагируют, но они взаимодействуют энергично в присутствии какой-либо жидкой фазы. Смеси олефинов и парафинов при этих условиях реагируют быстро с образованием как продуктов присоединения, так и замещения [9]. Энергия, необходимая для реакции замещения, возможно получается за счет сильно экзотермичпой реакции присоединения. [c.63]

    Под влиянием света и катализаторов увеличивается, повидимому, лишь общая скорость реакций хлорирования нормальных этиленовых углеводородов. Условия (температура, жидкая или паровая фаза, поверхность, загрязнения) не оказывают влияния на соотношение образующихся изомерных продуктов замещения. Однако с изменением некоторых условий меняются относительные количества продуктов замещения и продуктов присоединения. Так, при высоких температурах, особенно в интервале 300—600°, получается более высокий выход продуктов замеше-ния. Склонность к образованию продуктов замещения увеличивается в ряду этилен, пропилен, бутен-2, пентен-2, изобутилен, высш ие третичные олефины. Избыток олефиновых углеводородов способствует реакции замещения, а избыток хлора — реакции присоединения. [c.318]


    Взаимодействие органических соединений с активным хлором описывается реакциями присоединения, замещения и окисления. Эти реакции детально изучены в работах Е. А. Шилова с сотрудниками, использовавших кинетический метод. [c.87]

    Симметричный дихлорэтан впервые был получен в 1795 г. реакцией присоединения хлора к этилену. Этот метод получения дихлорэтана в настоящее время широко распространен в промышленности. При хлорировании этилена имеет место также реакция замещения дихлорэтана, приводящая к образованию в качестве побочных продуктов трихлорэтана и тетрахлорэтана. Выход хлоропродуктов увеличивается с повышением температуры реакции. Торможение реакции замещения хлорным железом показано в табл. VI.4 [63]. [c.377]

    С повышением температуры реакция присоединения хлора постепенно сменяется реакцией замещения (табл. 18). [c.177]

    При хлорировании олефинов, помимо реакции присоединения хлора, имеет место замещение водорода на галоид, в результате чего образуются полихлор углеводороды. [c.143]

    Средняя температура реакции, °С Мольное соотношение пропилен хлор Содержание хлора в продуктах присоединения, % Содержание хлора в продуктах замещения, % Конверсия, г С1 [c.177]

    При более высоких температурах это промен уточное соединение должно диссоциироваться на ароматическое соединение и свободный атом хлора. Затем идет атака боковой цепи (СИ). Подобное объяснение справедливо и для реакции присоединения хлора к пропилену нри низких температурах, а нри высокой температуре происходит замещение водорода в метильной группе [5]  [c.469]

    Были рассчитаны энергии активации и для реакций присоединения хлора к этилену при расчетах также предполагали два возможных механизма — радикальный или бимолекулярный. Их значения оказались близки (28,5 и 25,2 ккал/моль соответственно), однако меньше (при одинаковых условиях), чем для реакций замещения. Ингибирующее действие кислорода и в этом случае говорит в пользу радикального механизма. [c.265]

    Интересные результаты получены при хлорировании смеси этана и этилена (1 1), которые получаются при разделении газов крекинга. Количество хлора, вступающего в реакцию присоединения с компонентами этой смеси, меньше, чем необходимо для взаимодействия с чистым этиленом, им методом можно получить смесь, содержащую 67—68% хлористого этила. Зависимость количества хлора (в %), который реагирует (с замещением или присоединением) со смесью этана и этилена, от температуры представлена на рис. 99. [c.276]

    Аналитическое значение имеет реакция присоединения галоидов к олеф Н1ам, Прп комнатной температуре реакция присоедиис-иия селективно проходит лищь в случае пода бром и хлор не только присоединяются, но и замещают атомы водорода. Чтобы склю-чить реакцию замещения, бромирование нужно проводить п темноте прп пониженных температурах [c.80]

    Хотя алкены могут образовывать продукты замещения, реагируя, например, с хлором на свету, гораздо чаще они вступают в реакции присоединения. [c.583]

    Таким образом, получение аллильных хлоридов действием хлора не является реакцией прямого замещения подвижного водорода этиленовых углеводородов реакция протекает с присоединением катиона хлора и дальнейшим отщеплением протона от образовавшегося органического катиона ( кажущееся замещение). [c.213]

    Активный хлор ири взаимодействии с различными органическими веществами участвует в реакциях присоединения, замещения и окисления. При очистке воды наибольший интерес представляют реакции замещения (хлорирование фенолов и др.) и окисления (гуминовых веществ, спиртов и др.). По активности в реакциях замещения хлорирующие реагенты располагаются в следующий ряд lj >НС10> С10 . [c.644]

    Активный хлор, взаимодейетвуя е органическими соединениями, участвует в реакциях присоединения, замещения и окисления. В процессах дезодорации наибольший интерес представляют реакции замещения и окисления. [c.385]

    Реакции замещения атомов водорода хлором являются экзотермическими. С большим тепловым эффектом протекают реакции присоединения хлора по ненасыщенным связям при умеренной температуре (примерно 400 °С). Высокая экзотермичнбсть реакций хлорирования предопределяет выбор технологической схемы, аппаратурное оформление и меры безопасности. Отступления от [c.112]

    Циклизация, как отмечалось выше, идет на ранних стадиях хлорирования одновременно с начальным замещением. Теоретическим пределом циклизации, вычисленным статистически, является циклизация на 86,5 % всех изопреновых групп в природном каучуке. Металеитическое хлорирование катализируется кислородом и перекисью, а хлорирование с присоединением хлора — ультрафиолетовым светом. Циклизация отчасти тормозится с возрастанием роли реакции присоединения хлора. При комбинированном воздействии перекисей и ультрафиолетового освещения хлорирование можно довести до очень высокой степени [24]. [c.220]


    Так как хлор, очевидно, вступает в реакцию замещения пр1жде, чем он присоединяется к углеводороду природного каучука, то невозможно прямым хлорированием приготовить дихлорпд каучука, в котором бы оба атома хлора были присоединены к двойной связи одной группы gHg. Однако эта реакция была осуществлена нри помощи каталитического присоединения хлора к каучуку, используя в качестве источника хлора хлористый сульфурил. Полного присоединения не удалось достичь, содержание хлора составляло только 47,0 % вместо теоретически вычисленного 51 %. Обычно в продукте присутствовало весьма небольшое количество серы. Реакция катализируется присутствием гидроперекисей (более 3%) в отсутствии перекисей ультрафиолетовый свет способствует успешному течению реакции присоединения. Содержание в продукте хлора, реагирующего с анилином, невелико [371. [c.221]

    При хлорировании этилена реакция замещения дихлорэтилена с образованием трихлорэтана является индуцированной , она ингибитируется кислородом. Дихлорэтилен хлорируется с трудом, если не считать реакции присоединения хлора к этилену. Присутствие 1 % кислорода в смеси хлора с этиленом замедляет реакцию замещения, но полностью ее пе прекращает. Тот же эффект отмечен при хлорировании пропилена и смеси н-бутана с бутеном-2 [30]. Даже в присутствии катализаторов кислород сильно ингибитирует реакции замещения в жидкой фазе. [c.365]

    Присоединение галоидов. При обычных температурах хлор вступает с олефинами в реакцию присоединения. Так, по этому методу получают этилендихлорид (компонент выносителя в тетра-этилсвинцовых смесях) из этилена. Дальнейшее хлорирование приводит к образованию от трихлор- до гексахлорэтанов последние являются хорошими обезжиривающими растворителями. При несколько более высоких температурах имеют место реакции замещения. При хлорировании пропилена повышение температуры на 50° С ведет к получению аллилхлорида вместо пропилендихло-рида [261]. [c.580]

    Прн взаимодействии галогегтоп с ароматическими соединениями реакция может-в осповпоы протекать в трех направлениях присоединение, замещение в ядре и замещение в боковой цепи. Последнее направленно будет рассмотрело на стр. 141, 145 ел. Замещение бензола хлором (бромом) является ионной (элрктрофпльноп) реакцггрй [НО], [c.104]

    Олефины хлорируются радикально-цепным путем преимуще-сгвенно 15 газовой фазе и в отсутствие катализаторов ионных реакций. При этом конкурируют две реакции присоединение хлора гю двойной связи и замещение атомов водорода  [c.102]

    В промышленном масштабе получение ГХЦГ проводят в жидкой фазе при, УФ-облучении реакционной среды в стальных аппаратах колонного типа, по высоте которого помещаются кварцевые лампы, заключенные в защитные футляры из тугоплавкого стекла. Для защиты от коррозии и для предотвращения каталитического воздействия железа, способствующего реакциям замещения атомов водорода хлором, аппараты изнутри освинцовывают. Бензол и хлор вводят противотоком друг к другу. Реакция присоединения хлора протекает с выделением большого количества тепла (примерно 201 кДж/моль). Для теплосъема применяют холодную воду или холодильный рассол, циркулирующий в рубашке реакционного аппарата и в трубках, помещенных внутри него. [c.429]

    Интересно отметить, что нафталин реакциоиноспособнее, чем бензол, не только в реакциях замещения водорода галоидом, но н в реакциях присоединения по двойным связям. Подобно бензолу, нафталин особенно-ярко проявляет свою способность к присоединению галоида в реакции хлорирования. Действие хлора на нафталин при пониженной температуре приводит к иафталиндихлориду, который распадается прн 50° на а-хлор-нафтални и хлористый водород  [c.181]

    Если хлорировать пропилен при 240 , в реакцию вступает 26% хлора, из которых 40% расходуется на замещение и 60% — на присоединение. При 280° и степени превращения хлора 80% последний реагирует уже по реакции замещения на 63%, а по реакции присоединения на 37%. Отсюда отчетливо видно, особенпо на примере пропилена, что, начиная с определенной критической температуры, реакция присоединения медленно переходит в реакцию замещения, и в продуктах реакции наряду с дихлерпропапом постепепно появляется хлористый аллил [c.351]

    Эти результаты показывают, что высокотемпературное хлорирование следует рассматривать как реакцию пепосредственпого замещения, а не как реакцию, в промежуточной стадии которой тгроисходит присоединение хлора по двойной связи [3]..  [c.352]

    Как легко видеть, начальная стадия — фотохимическое расщепление молекулы хлора — приводит к образованию двух реакционноспособных частиц — свободных атомов хлора, являющихся, в сущности, радикалами. Это подтверждается тем, что скорость реакции оказывается пропорциональной корню квадратному из интенсивности поглощенного света, т. е. каждый квант поглощенной энергии вызывает инициирование двух цепей реакций. Присоединение свободного атома хлора к молекуле ненасыщенного соединения приводит к образованию другого радикала ХП, способного вступать в радикальную реакцию замещения с молекулой хлора, в результате чего образуется конечный продукт присоединения XIII и свободный атом хлора. Этот атом способен инициировать тот же цикл реакций со следующей молекулой ненасыщенного соединения, так что процесс продолжается. Таким образом, каждый атом хлора, образованный а результате фотохимического расщепления, инициирует исключительно быструю цепную реакцию. [c.288]

    Было показано, что при повышенных температурах ( 450 °С) лропилен СНзСН—СНа хлорируется с образованием хлористого аллила, а не присоединяет хлор по двойной связи. При таком повышении температуры реакция присоединения становится обратимой (ср. стр. 290), а реакция замещения, протекающая с промежуточным образованием стабилизованного аллильного радикала, остается необратимой  [c.297]

    Химические свойства предельных углеводородов. Предельные углеводороды отличаются химической инертностью, т. е. при обычной температуре не окисляются и не реагируют с концентрированной серной кислотой и рядом других энергичных реагентов. Этим объясняется их название—парафины (parum affinis), что в переводе на русский язык означает мало сродства . В результате более подробных исследований установлено, что предельные углеводороды инертны только по отношению к основаниям, минеральным кислотам средней силы п окислителям в водном растворе. К реакциям присоединения парафины неспособны, так как в этих соединениях все связи атома углерода насыщены. Однако они легко вступают в реакции замещения при взаимодействии с хлором и бромом, образуя соответствующие галоидпроизводные. Эти реакции происходят на рассеянном солнечном свету даже при обыкновенной температуре. [c.54]

    Аналогичным образом не мешают присоединению и галоидные заместители, причем в ряду р-нафтохинона такое замещение стабилизует чувствительное в других случаях хинонное кольцо (Данн , 1937). Так, 3-хлор-1,2-нафтохинон может быть использован для реакции Дильса-Альдера, тогда как незамещенный 1,2-нафтохинон в этих условиях разруша-зтся. Электроноакцепторные свойства атома галоида компенсируют вызываемое им пространственное затруднение реакции присоединения. В 2,3-дициан-1,4- бензохиноне сильно электроноакцепторные заместители настолько повышают диенофильность смежной с ними двойной связи, что диен 1 -ацетоксивинилциклогексен I присоеди- [c.426]

    Силыюэкзотермичное присоединение хлора к бензолу, не подвергнутому специальной очистке, не требует подвода тепла и проводится чаще всего при УФ-облучении в этом случае реакцию мо кно выполнять в присутствии водного раствора щелочи Катализаторы, такие, как железо, хлориды железа, сурьмы лли иод, благоприятствуют элоктрофилыгому замещению, которое под действием имеющихся в техническом бензоле нг> шачителышх примесей протекает в качестве побочной реакции также при проведении реакции присоединения. [c.105]

    Влияние температуры и света. Повышение температуры, естественно, ускоряет процесс замещения водорода галоидом как в ароматическом ядре (в присутствш переносчика), так и в боковых цепях. Свет ускоряет процесс замещения водорода галоидом в боковых цепях, а также присоединение галоида по месту двойных связей-в ядре. Интересно влияние высокой температуры (500°) на реакцию хлорирования пропилена в этих условиях хлор вместо присоединения по месту двойной связи замещает атом водорода метильной группы, причем образуется хлористый аллил с выходом 85% от теоретического. При обычной температуре идет реакция присоединения хлора по месту двойной связи пропилена. Отсюда можно сделать вывод, что при высокой температуре этиленовые связи устойчивы против воздействия галоидов, подобно двойным связям ароматических систем . [c.175]

    Типичные примеры такого присоединения можно найти в книге Губен-Вейля [24]. Реакции присоединения хлора можно проводить как со свободным хлором, так и в растворителе или в присутствии катализатора [25, 26], например тетрабутиламмонийиодтетрахло-рида [27], хлористого сульфурила [28], пятихлористого фосфора [29] и Ы-хлорсукцинимида и хлористого водорода [30]. Для неактивных олефинов в качестве катализатора рекомендуется действие света, особенно для реакции с ароматическими соединениями. Раствор хлора в бензоле под действием солнечного света образует" смесь ыс-/мраяс-изомеров гексахлорциклогексана, плавящуюся при 157 "С. Подобные реакции можно осуществить с хлорбензолом, который образует смесь гептахлорциклогексанов, и с алкилбензолами, образующими при этом как продукты замещения алкильной группы, так и продукты присоединения к бензольному кольцу [31]. Для осуществления присоединения к другим неактивным олефинам. можно использовать катализаторы типа Фриделя — Крафтса [32] [c.408]


Смотреть страницы где упоминается термин Хлор, реакции присоединения и замещения: [c.211]    [c.66]    [c.62]    [c.41]    [c.190]    [c.191]    [c.349]    [c.350]    [c.2]    [c.345]    [c.218]    [c.218]    [c.329]    [c.279]   
Препаративная органическая фотохимия (1963) -- [ c.226 ]




ПОИСК





Смотрите так же термины и статьи:

Реакции замещения

Реакции присоединения

Реакции присоединения и замещения

Реакции присоединения и замещения хлора и брома

Хлор, присоединение

Хлор, реакции присоединения



© 2024 chem21.info Реклама на сайте