Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбент характеристики

    На основе оксида алюминия промышленность выпускает ряд адсорбентов. Характеристика некоторых из них приведена в табл. 2. [c.23]

    Несмотря на столь большое различие в исходных данных в указанных экспериментах, мы все-таки считаем возможным провести некоторое сопоставление зависимости д = f %) с зависимостью с со = /(т), так как действительно характер изменения 9 от т должен сильно зависеть от объема V или вернее в нашем случае от объема, удельной поверхности адсорбента, характеристики адсорбтива, его концентрации и т. д. [c.255]


    Транспортировались семь видов гранулированных материалов (катализаторы-адсорбенты), характеристика которых приведена в табл. 36. [c.109]

    КРАТКАЯ ХАРАКТЕРИСТИКА АДСОРБЕНТОВ [c.88]

    Коэффициент разделения и избирательная адсорбционная емкость отнюдь не могут считаться эквивалентными характеристиками при оценке избирательного действия адсорбента. Адсорбент с большой удельной по- верхностью, обладающий поэтому и большой избирательностью адсорбции, в то же время может иметь относительно большие поры, в результате чего он может характеризоваться относительно малым коэффициентом разделения. Риз [41] описал недавно аэрогель кремнезема с большой удельной поверхностью (796. и /г), но в то же время и с большим средним диаметром [c.160]

    Однако, как было показано выше, вычисление потенциальной энергии адсорбированной молекулы представляет трудную задачу и может быть количественно выполнено лишь приближенно и только в простейших случаях. Тем не менее даже качественное рассмотрение адсорбции молекул яр но-статистическими методами представляет большой интерес, так как позволяет установить, от каких свойств молекул адсорбата и образующих адсорбент частиц зависят такие важные термодинамические характеристики адсорбционных систем, как дифференциальная работа и теплота адсорбции, константа равновесия в уравнении изотермы адсорбции и т. п. [c.507]

    Так как единица массы адсорбента может обладать разной величиной удельной поверхности, то величина удельного удерживаемого объема (как и соответствующие величины константы изотермы адсорбции Генри Ка.с или Ка.р) в случае газо-адсорбционной хроматографии не является характеристикой природы системы данный компонент газовой смеси—поверхность адсорбента. Физико-химической константой, зависящей при данной температуре только от природы этой системы, будет абсолютная величина удерживаемого объема, т. е. отнесенная к единице поверхности твердого тела, а именно  [c.561]

    Из числа промышленных адсорбентов для осушки газов применяются силикагель, алюмогель (активированная окись алюминия), активированный боксит и молекулярные сита 4А и 5А. В последнее время молекулярные сита получили широкое распространение пе только для осушки, но и во многих других процессах нефтепереработки и нефтехимии. Молекулярные сита представляют собой кристаллические цеолиты (водные алюмосиликаты кальция, натрия и других металлов), обладающие высокой избирательностью адсорбции по размерам молекул, в результате чего молекулы малых размеров адсорбируются предпочтительно по сравнению с крупными молекулами. В противоположность обычным адсорбентам типа алюмогелей или силикагелей поры в кристаллической решетке молекулярных сит отличаются идеальной однородностью размеров, и поэтому можно количественно отделять мелкие молекулы, проникающие внутрь этих пор, от более крупных. Вследствие того что адсорбция на них представляет собой своеобразное просеивание смесей молекул с их сортировкой по размерам, они получили название молекулярные сита . Характеристика адсорбентов, применяемых для осушки газа, приведена в табл. 31. [c.159]


Таблица, 31. Характеристика адсорбентов, применяемых для осушки газа Таблица, 31. <a href="/info/348222">Характеристика адсорбентов</a>, применяемых для осушки газа
    Эффективность каталитических процессов крекинга помимо технологических факторов определяется активностью и стабильностью катализаторов, их химическим составом, пористо-структурной характеристикой и применяемыми промоторами. В области адсорбционных процессов значение алюмосиликатных адсорбентов, а также силикагелей и цеолитов возрастает с каждым годом, и в связи с этим большой интерес представляют новые методы получения силикагелей с различной адсорбционной способностью и пористостью. [c.7]

    Для характеристики качества катализаторов и адсорбентов форма частиц имеет большое значение. Например, в крекинг-процессе с алюмосиликатным катализатором шарики с трещинами или изъянами будут быстро разрушаться сами, разрушать аппаратуру, вызывая повреждение поверхности и, превращаясь в пыль, будут уноситься в атмосферу, обусловливая этим большие потери. Микросферические катализаторы с большим содержанием мелочи, кроме уноса в атмосферу, создают сильное уплотнение работающего елоя катализатора в системе, препятствующее свободному проходу .реакционных паров в реакторе и регенерационного воздуха в регенераторе,. [c.16]

    Насыпная плотность — количество вещества в единице объема, измеренное определенным способом (стр. 157) и выраженное вг/сл или в кг/л. Она является удобной и простой характеристикой катализаторов и адсорбентов. Насыпная плотность характеризует возможность циркуляции катализатора в системе, обусловливает потери при каталитическом крекинге и адсорбционных процессах, а также регенерируемость при высоких температурах. [c.17]

    Для выделенных областей дискретизации строится функция распределения диаметра вторичных глобул Z>2i, числа вторичных глобул Nzi и числа первичных глобул во вторичных от радиуса пор г. В качестве примера на рис. 3.5. приведены результаты расчета характеристик строения двух образцов шарикового 7-оксида алюминия, синтезированных в лабораторных условиях. Найденные функции распределения экстраполируются на область изменения радиуса пор, не доступную для экспериментального определения, до выполнения следуюш,их условий а) равенства объема единичной гранулы катализатора (адсорбента) сумме плотного объема всех вторичных глобул и сформированных ими пор б) равенства плотного объема вторичной глобулы сумме плотного объема формирующих ее первичных глобул и сформированных ими пор (объем этих пор для всех областей дискретизации соответствует экспериментальному на начальном (левом) участке кривой распределения объема пор по радиусам либо уточняется путем экстраполяции). [c.146]

    Рассмотренная модель является одним из приближений в описании строения пористых тел, однако и оно позволяет найти корреляционные зависимости между варьируемыми факторами в процессе синтеза катализаторов (адсорбентов) и характеристиками их пористой структуры, а следовательно, прогнозировать их свойства и оптимальную технологию синтеза, не прибегая к трудоемким экспериментальным исследованиям. [c.147]

    Автоматизированная система активной идентификации характеристик адсорбентов и катализаторов [c.212]

    Природный газ на выходе из скважин полностью насыш еп влагой, однако на пути к установке осушки его давление и температура могут измениться,, что, в свою очередь, приведет к изменению относительной влажности газа. Она может оказать значительное влияние на показатели адсорбционного процесса осушки. Поэтому при проектировании установок необходимо учитывать относительную влажность газа. В табл. 23 приводится характеристика адсорбентов, применяемых для осушки газов. [c.246]

    Необходимость отметить, что емкость, представленная кривыми рис. 168, очень близка к емкости монослоя. Последняя определялась при условии, что на поверхности адсорбента удерживается только один слой молекул адсорбируемого вещества. Зная величину поверхности и размер адсорбируемых молекул, можно рассчитать адсорбционную емкость монослоя. По этой методике были определены адсорбционные характеристики всех типов силикагелей, активной окиси алюминия и молекулярных сит. Таким образом, адсорбционная емкость любого адсорбента по любому компоненту зависит от величины его [c.258]

Рис. 170. Характеристика цикла регенерации адсорбента процесса КЦА [109 Рис. 170. <a href="/info/798772">Характеристика цикла</a> <a href="/info/28291">регенерации адсорбента</a> процесса КЦА [109

    Осушку воздуха можно осуществлять двумя путями— поглощением водяных паров различными адсорбентами или охлаждением воздуха до конденсации паров и выпадения капель влаги. Характеристика различных методов осушки воздуха и пределы их применения [c.96]

    Если степень необратимости г1 еобр достаточно велика, то существенное различие наблюдается и между функциями распределения пор по размерам, рассчитанными на основании соответственно изотермы адсорбции и изотермы десорбции. На рис, 1 представлены функции распределения по радиусам, вычисленные по методу Дубинина [3] на основании изотерм адсорбции (сплошные линии) и десорбции (пунктир) для адсорбентов, характеристики которых приведены выше. Каким из этих расчетных параметров отдать предпочтение, неясно. Из общих термодинамических соотношений можно получить лишь оценки для структурных характеристик мезопористых материалов. Обсудим это подробнее на примере вычисления поверхности адсорбата. [c.239]

    На резервуарах и трубопроводах, имеюших вакуумную изоляцию, для поглощения остаточных газов и поддержания глубокого вакуума в изолирующем пространстве применяются адсорбенты (характеристика адсорбентов приведена в гл. IV). Адсорбенты помещают в специальные карманы (камеры) или корзины непосредственно на стенке резервуара с целью повышения адсорбционной способности адсорбента. [c.137]

    Образцы адсорбентов, характеристика которых дана в предыдущих наших работах [5], подвергались 10-часовому прокаливанию (700° С) на воздухе для выжигания органических загрязнений, а затем тренировались 3 часа в высоком вакууме при 500° С. Пары бензо.та, предварительно подвергнутого вакуумному обезгаживанию, поступали с упругостью 80 мм рт. ст. внутри отпаянной стеклянной системы к порошку данного адсорбента путем разбивания внутренней стеклянной перегородки и адсорбировались па нем в течение часа при 20° С. После адсорбции три порции каждого адсорбента пересыпались внутри системы в три шаровидные кюветы увиолевого стекла, снабженные тонкими отростками, и отпаивались для проведения измерений спектров диффузного отражения и ЭПР. Методика измерений описана в [5]. Первая порция адсорбента измерялась при 20° С, вторая после прогрева при 100° С (20 час.), третья подвергалась освещению в течение 10 час. полным ультрафиолетовым светом кварцевой лампы СВДШ-250 при перемешивании. На рисунке приведены спектры поглощения, измеренные на СФ-4 в диффузно отраженном свете с указанием масштаба по оси ординат знаком + отмечены образцы, обнаруживавшие достаточно интенсивный одиночный сигнал ЭПР, свидетельствовавший о появлении свободного радикала. На всех кривых присутствует ультрафиолетовая полоса поглощения 260 нм, обязанная мало возмущенным физически адсорбированным молекулам бензола. Эта полоса является единственной в спектрах 4, 6, 7, 9, 10, 11, полученных при адсорбции gHg па силикагеле, окиси алюминия, подвергнутых нагреву или ультрафиолетовому облучению. При адсорбции на алюмосиликагеле уже при 20° С появляется полоса у 500 нм (спектр 8), которая [c.413]

    Слепая схема адсорбционной газоочпстптельной установки, состоящей из вентилятора, брызгоуловнтеля, фильтра, адсорбера, конденсатора и сборника отстойника, представлена на рис. 3.8. Показать, какой знак соответствует каждому из этих аппаратов, какие адсорбенты чаще всего используются в газоочистной установке, дать их сравнительную характеристику. С помощью стрелок указать направления движения очищаемого п очищенного газов, СЛ1Ш0В, пара и конденсата. [c.44]

    Одна из важнейших характеристик адсорбента — его а д-сорбционная емкость, т. е. количество вещества, которое может быть поглощено единицей массы или объема адсорбента при данных условиях адсорбции. Адсорбционная емкость выражается в мае. %, в г/г, в г/100 г и т. п. Адсорбционную емкость индгда называют активностью адсорбента. [c.88]

    Для только что описанного процесса в равновесных условиях внутренняя жидкость имеет наиболее высокую концентрацию компонента 1, а внешняя — наиболее низкую. Поэтому можно проследить за достижением системой равновесного состояния, отбирая пробы внешней жидкости через определенные промежутки времени, в течение которых происходит изменение концентрации. Этот метод применялся Иглом и Скоттом [91 для получения кинетических характеристик систем с различными углеводородами и адсорбентами. С небольшими изменениями он был использован также для получения данных, приведенных в табл. 2 и 3 [34]. [c.148]

    Получив с помощью уравнения (116) изотерму адсорбции, можно ее обработать рассмотренными в главах XVI, XVII и XIX способами и получить, например, методом БЭТ (см. сгр. 454) емкость плотного монослоя и величину удельной поверхности адсорбента, а также получить изменение химического потенциала исследуемого вещества при адсорбции, откуда можно вычислить зависимость коэффициента активности адсорбата от заполнения иоверхности. Из серии хроматограмм, определенных при разных температурах, можно получить соответствующую серию изотерм адсорбции и определить нз них зависимость дифференциальной теплоты адсорбции от заполнения поверхности, дифференциальные энтропии и другие термодинамические характеристики адсорбции при разных заполнениях. Результаты таких газо-хроматографических исследований при благоприятных условиях опыта близки к результатам статических методов. [c.592]

    Адсорбция сопровождается выделением тепла. Теплота адсорбции при расчете на 1 з адсорбента приблизительно пропорциональна величине адсорбции, поэтому она может служить относительной мерой адсорбционной способности пористых адсорбентов. Так как адсорбция есть поверхностное явление, то чем больше общая поверхность адсорбента, тем больше молекул он может поглотить. Поэтому порпстые и порошкообразные адсорбенты обладают большой адсорбционной (поглотительной) способностью. Адсорбционная характеристика пористых адсорбентов выражается равновесной статической п динамической активностью. Равновесная статическая активность — это число молекул вещества, поглощенных адсорбентом при наступлении адсорбционного равновесия она характеризует обычно процессы периодической адсорбции. Динамическая активность — число молекул, поглощенных поверхностью адсорбента при движении вещества через слой адсорбента она характеризует процессы непрерывной адсорбции. [c.24]

    Удельная поверхность и структура (размер и характер пор) являются важными характеристиками, определяющимн адсорбционные свойства адсорбента. Адсорбция зависит от величины поверхности чем больше пористость твердого тела, тем больше его общая удельная поверхность и способность к адсорбции. Для силикагелей, алюмогелей и алюмосиликатных катализаторов величина удельной поверхности может быть в пределах от 10 до 1000 м г. [c.24]

    Специфической характеристикой, И Шользуемой при расчете процессов адсорбции, является динами еская активность адсорбента. Это средняя концентрация адсорЗтнва в слое адсорбента, полученная к моменту проскока , т. е. к началу появления адсорбтива на выходе из слоя адсорбентг [2]. [c.147]

    Принимаем следующие характеристики адсорбента средний диаметр частщ с(ч=1,0-10" м  [c.149]

    Во втором издании (1-е вышло в 1967 г.) освещены теоретические основы и технология процессов производства азотоводородной смеси и синтез—газа, синтеза аммиака. Даны примеры технологических расчетов, характеристики катализаторов, адсорбентов и абсорбентов. Рассмотрено типовое оборудование, а также принципы автоматизации технологических процессов. Особое внимание уделено описанию энерготехнологических агрегатов оптимально большой единичной мощности. [c.464]

    Ф эакцию 50—150° С подвергают адсорбционной хроматографии 1а силикагеле для разделения на ароматическую и парафино-нафт новую часть. (Берется силикагель, поглощающий на 100 г не менее 11 г бензола. Размер частиц адсорбента проходят через сито. № 40 и не проходят через сито № 80.) Фракцию ароматических углеводородов перегоняют на колонке № 3 — сначала для удаления пентана (или изопентана), добавленного при адсорбции в качестве смещающего растворителя. Для депентанизированной фракции определяют физические характеристики п , й , ани-линоьую точку). После этого фракцию перегоняют, причем снимают кривую перегонки и выделяют следующие фракции  [c.99]

    Сернистые нефти типа туймазинской и ромашкинской содержат больше полярных соединений, извлекаемых адсорбентами, поэтому при их адсорбционной очистке требуется повышенная кратность адсорбента к сырью по сравнению с дистиллятами малосернистых нефтей типа мухановокой. Адсорбционная очистка дистиллята смеси бакинских парафинистых нефтей при той же кратности адсорбента к сырью дает масло, по цвету и индексу вязкости значительно уступающее маслам из восточных нефтей, что связано с резким различием их химического состава. Адсорбционная очистка дает возможность получать высоко(качественные масла из дистиллятов восточных нефтей широких пределов выкипания (от фракций с к. к. 380°С до фракции с к. к. выше 500°С). При изменении расхода адсорбента можно регулировать качественные и количественные характеристики получаемого рафината. [c.269]

    ЭКСПЛУАТАЦИ0НН1.1Е ХАРАКТЕРИСТИКИ УСТАНОВОК ОСУШКИ ГАЗА АДСОРБЕНТАМИ [c.256]

    При физической адсорбции энтропия адсорбции многих газов лежит в пределах 80—]00Дж/(моль К). Если принять предельное значение адсорбции Гоо= = 10 моль-см и толщину адсорбционного слоя 5-10 см, то концентрация газа в адсорбционном слое будет равна 10 /5 10 1 = 0,02 моль/см , или 20 моль/л. Если рассматривать газ как идеальный, то уменьшение энтропии газа в результате адсорбции при нормальном давлении газа над адсорбентом будет равно / 1п20 22,4 и 54 Дж/(моль К). Если учесть двухмерное состояние адсорбированного газа, то изменение энтропии будет еще больше. Следовательно, при взаимодействии субстрата с поверхностью катализатора только за счет физической адсорбции изменение энтропии газа Д 5° будет равно 80 Дж/(моль К)- Это равносильно тому, что энергия Гиббса адсорбированного газа, если рассматривать его как идеальный, возрастает примерно на 24 Дж/(моль К), так как при изотермическом сжатии идеального газа ДО + 4- /"Д 5 =0 (см. 71). Тепловой эффект физической адсорбции изменяется в широких пределах. Термодинамические характеристики процесса адсорбции некоторых веществ на саже приведены ниже. [c.641]

    Адсорбенты. Для непрерывной адсорбционной очистки с движущимся адсорбентом применяются синтетические алюмосили-катные адсорбенты мелкосферический или молотый. Ниже приводятся их характеристики  [c.245]

    Расчет адсорбционных процессов в неподвижном слое адсорбентов предлагается осуществлять с учетом двух основных факторов, влияющих на характер развития процесса нелинейности изотермы адсорбции и кинетики, определяемой внутренней и продольной диффузией. Представлены аналитические решения вну-тридиффузионных процессов адсорбции на зернах различной геометрии для произвольной нелинейной изотермы с постоянным и переменным эффективными коэффициентами диффузии, функционально зависимыми от степени заполнения адсорбционного пространства адсорбатом. Установлена связь между кинетическими и равновесными характеристиками процесса. [c.5]

    На первом этапе, который соответствует стадии разработок проектных решений, это, как правило, параметры адсорбционных аппаратов, связанные с расходными и энергетическими характеристиками технологической схемы, физико-химическими характеристиками процесса, обусловленными выбором наиболее эффективного адсорбента, давления, температур, скоростей и расходрв обрабатываемого потока среды, расхода теплоты и условий регенерации и т. п. Изменение указанных величин оказывает более сильное воздействие на экономические и массогабаритные показатели аппаратов, чем их внутренние характеристики, поэтому последние на данном этапе оптимизации принимаются примерно одинаковыми для всех Ьариантов аппаратурного оформления установок. При оптимизации на ста ии разработок проекта установки определяются внутренние параметры адсорберов (скорость потока, концентрации, продолжительности стадий процесса и др.) при заданных основных физико-химических и термодинамических параметрах установки. [c.10]


Смотреть страницы где упоминается термин Адсорбент характеристики: [c.190]    [c.82]    [c.82]    [c.256]    [c.303]    [c.104]    [c.273]    [c.5]   
Курс газовой хроматографии (1967) -- [ c.339 ]




ПОИСК







© 2025 chem21.info Реклама на сайте