Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полиакриловая кислота свойства

    Цель работы. Сопоставление электрохимических и гидродинамических свойств водных растворов полиметакриловой и полиакриловой кислот определение АО конформационного перехода полиметакриловой кислоты методом потенциометрического титрования. [c.131]

    Экспериментальные данные и опыт эксплуатации полимерных материалов в условиях воздействия агрессивных сред позволяют делать выводы о связи мелсду структурой высокомолекулярных соединений и их химической стойкостью, В отличие от низкомолекулярных соединений, макромолекула содержит большое число реакционноспособных групп, в зависимости от характера которых или замены их другими группами свойства полимера могут в значительной степени изменяться в сторону их ухудшения или улучшения. Например, на поливиниловый снирт, содержащий гидроксильные группы, оказывают влияние вода, кислоты и щелочи. Стойкость поливинилацет ата, полиакриловой кислоты и других высокомолекулярных соединений, которые можно представить как производные полиэтилена при частичном или полном замещении водорода гидроксильными, ацетатными или другими функциональными группами, также понижена. Соединения, у которых водород в полиэтиленовой н,епи замещен фтором или фтором и хлором, стойки во всех агрессивных средах. [c.357]


    Предпринимаются попытки сочетать положительные свойства различных добавок. Например, высокоэффективные мембраны получены комбинированием добавок гидроокиси циркония и полиакриловой кислоты [103], а также осаждением слабых полиэлектролитов на подложках с последующим переводом их к нейтральной форме за счет изменения pH раствора [104]. [c.88]

    П. по электрохимич. свойствам существенно отличаются от низкомолекулярных электролитов. Так, ионизация полиакриловой кислоты происходит в более широком интервале pH, а кривая ее потенциометрич. титрования располагается в области более вы- [c.46]

    Химические свойства полиакриловой кислоты аналогичны свойствам низкомолекулярных многоосновных карбоновых кислот. При взаимодействии с основаниями полиакриловая кислота образует соли, со спиртами — сложные эфиры. [c.242]

    В сельском хозяйстве высокополимеры находят применение как материал, улучшающий свойства почв [242—244]. Для этой цели применяют полиакриловую кислоту и ее производные с мол. в. выше 20 ООО, а также альгиновую кислоту и карбокси-метилцеллюлозу [242, 243]. [c.33]

    Исследовались физико-химические и динамические механические свойства полиакриловой кислоты и ее производных [58, 59, 60, 64, 66, 79, 383, 597, 891, 895—995]. Растворимость полимерных частиц эфиров акриловой кислоты в мономере находится в обратной зависимости от их величины [996]. [c.381]

    При этом макромолекулы полиакриловой кислоты теряют свою кинетическую самостоятельность, полимер приобретает пространственное строение, в результате чего резко изменяются физические свойства системы. [c.46]

    В отличие от полимераналогичных преврашений реакции, приводящие к переходу линейного полимера в пространственный, являются макромолекулярными. Макромолекула полимера вступает в такую реакцию как единое целое, т. е. результат реакции не зависит от того, какое звено макромолекулы в ней участвует. При этом достаточно прореагировать одной функциональной группе в макромолекуле полимера, чтобы макромолекула полностью утратила кинетическую самостоятельность. Поэтому резкое изменение свойств полимера наблюдается при очень низкой степени превращения функциональных групп. Так, например, для сшивания полиакриловой кислоты со средней молекулярной массой 50 000 теоретически требуется добавить 0,1% этиленгликоля (от массы полиакриловой кислоты), а для придания пространственной структуры хлопковой целлюлозе с молекулярной массой около 1 500 000 достаточно примерно 0,01% гексаметилендиизоцианата. [c.220]


    Гидрофильные полимеры, привитые к полиамидным и полиэфирным волокнам, повышают их электропроводность и понижают загрязняемость. Полимеры с гидроксильными группами в боковой цепи улучшают окрашиваемость активными красителями, а полимеры, обладающие основными или кислотными свойствами, — окрашиваемость кислотными и основными красителями соответственно. Полиамидное волокно, модифицированное путем прививки полиакриловой кислоты в форме кальциевой соли, имеет повышенную устойчивость к прожиганию сигаретами и тлеющим пеплом. [c.356]

    Х и мические свойства. При титровании полиакриловой кислоты четвертичными аммониевыми основаниями установлено, что увеличение размера катиона основания вызывает уменьшение кажущейся кислотности карбоксильной группы [997]. [c.381]

    На примере волокон, состоящих из поливинилового спирта и полиакриловой кислоты, изучалось превращение химической энергии в механическую, при этом было показано, что при изменении pH раствора происходит удлинение и сокращение образцов указанных выше систем 202,204-206,209, ив , 2442 Изучена электролитическая подвижность полиакриловой кислоты и другие ее свойства 54,199,291,2443-2450 Исследована растворимость привитых сополимеров на основе полистирола и акриловой кислоты 2451. Изучено поведение макромолекул полиакрилата натрия в растворе 2452-2455  [c.607]

    Прививать можно как ко всем. макромолекулам полимера, так и только к макромолекула. поверхностного слоя изделий из полимера. В последнем случае основная масса макромолекул не претерпевает изменений этим методом можно изменять смачиваемость волокон и пленок, улучшать их способность окрашиваться, повышать адгезию к другим материалам и т. п. Так, прививая карбоцепные полимеры к полиамидным волокнам, можпо повысить адгезию последних к резине. В результате прививки полиакриловой кислоты к пленкам из лавсана возрастает адгезия фотоэмульсии к таким пленкам это позволяет уменьшить толщину фото- и кинопленки в 2—3 раза без ухудшения их механич. свойств. Прививка полиакриловой к-ты к полиамидному корду и последующая обработка солями меди приводят к значительному повышению светостойкости корда после нагревания нрочность такого корда уменьшается в значительно меньшей стенени, чем корда необработанного. [c.162]

    При реакции низкомолекулярных спирта и кислоты образуется сложный эфир определенного строения, тоже низкомолекулярный. Если же реагирует, например, полиакриловая кислота с низкомолекулярным спиртом или поливиниловый спирт с низкомолекулярной кислотой, то в каждый момент времени реакции и по ее завершении в цепях содержатся сложноэфирные и непрореагировавшие кислотные или гидроксильные группы в разных соотношениях. Таким образом, каждая макромолекула содержит в своей структуре разные функциональные группы, а полимер в целом ком-пизиционно неоднороден. В результате реакционноспособность соседних функциональных групп повысится или понизится вследствие наличия рядом прореагировавшей функциональной группы ( эффект соседа ), а свойства продуктов эте-рификации будут различны. [c.221]

    Привитой сополимер АК и АС является радиационно устойчивым катионитом [7], и для его эксплуатационных свойств немаловажное значение имеет соотношение АС и АК. Так, увеличение содержания сополимера и уменьшение количества полиакриловой кислоты (ПАК) в карбоксильных катионитах улучшает эксплуатационные свойства ионитов (уменьшение набухаемости в воде на 58%, увеличение устойчивости в щелочной среде в 2 раза, увеличение радиационной стойкости). Таким образом, для получения карбоксильных катионитов с максимальным содержанием сополимера необходимо проводить взаимодействие между АС и АК при содержании АК в исходной смеси не более 60% и дозе облучения [c.133]

    Благодаря тому, что функциональные группы синтезированных ионитов расположены на поверхности и обмен ионов не лимитирован диффузией в фазе сорбента, скорость ионного обмена на синтезированных тканях значительно выше, чем на стандартных смолах (рисунок). Способность привитых двухслойных (особенно, на основе привитой полиакриловой кислоты) катионообменных материалов к реакции замещения иона водорода кислотных групп на катионы различных металлов с образованием солей полимерных кислот может быть использована для получения волокнистых материалов с большим содержанием связанного металла. Введение в двухслойный материал значительных количеств того или иного металла может привести к существенному изменению физических и физико-химических свойств материала, например, термических свойств волокон с привитым слоем из полиакриловой кислоты и ее солей (табл. 2). Полиэтиленовые и полипропиленовые волокна с привитым слоем полиакриловой кислоты сохраняют значительную прочность до температуры порядка 150°, но выше 170—200° они полностью теряют свою прочность вследствие реакции термического декарбоксилирования. Волокна же с привитым слоем из солей полиакриловой кислоты, полученные обработкой водородной формы привитых полимеров растворами соответствующих металлов, сохраняют механическую прочность при гораздо более высоких температурах. Это связано с большей термической устойчивостью солей полиакриловой кислоты по сравнению с самой полимерной кислотой. [c.56]


    При отделке ткани из целлюлозных волокон смесью полимера эфира полиакриловой кислоты и силоксановой смолы материалу придается хорошая несминаемость почти без потерь прочности на разрыв. Ткань после отделки имеет мягкое туше, устойчива к истиранию и не сорбирует хлор отбеливающего вещества при стирке [41]. Однако в некоторых исследованиях отмечается, что силоксаны не улучшают прочности на разрыв, так как оказывают смазывающее действие на волокна и увеличивают только сопротивление к истиранию. Такая разноречивость объясняется тем, что применялись кремнийорганические соединения, не одинаковые по строению или молекулярному весу, брались в разной концентрации и с различными катализаторами. Между тем есть указания [42], что на механические свойства материала значительно влияют строение и тип силоксана, а также его концентрация в растворе. В частности, при сравнении кремнийорганических соединений с неактивными и реакционноспособными группами у атома кремния [43] отмечается, что последним следует отдать предпочтение при совместном применении с термореактивными смолами. [c.233]

    Керн и другие исследователи [1279, 1280] получили растворимый гидразид полиакриловой кислоты действием гидразина или гидразингидрата на полиалкилакрилаты. Этот гидразид переходит в нерастворимое состояние при нагревании, соприкасаясь с воздухом при относительной влажности50%,при взаимодействии с метанолом и при действии окислителей. С азотной кислотой гидразид образует азид полиакриловой кислоты, обладающий взрывчатыми свойствами. Гидразид реагирует с альдегидами и кетонами с образованием гидразонов полиакриловой кислоты. Гидразоны из алифатических альдегидов — нерастворимые вещества. [c.485]

    В текстильной промышленности в качестве загустителей печатных красок и в процессах отделки волокон и тканей применяются природные коллоиды, продукты переработки природных веществ и искусственные вещества. Для разбавления и улучшения качества моющих средств при изготовлении нх, наряду с поверхностно-активными веществами, применяются и вещества, не обладающие поверхностно-активными свойствами. Для проклеивания материала (шлихта) в процессе подготовки пряжи к прядению и ткачеству применяются как природные коллоиды, например крахмал или клей, так и полусинтетические вещества, например продукты этерификации крахмала и целлюлозы, и синтетические вещества, например поливиниловые спирты, соли полиакриловой кислоты. Масла, например льняное, наносят на ткань (или волокно) в растворе органических растворителей или в виде эмульсии. [c.511]

    Недостатками тонкопленочного эпоксидного покрытия являются невысокие показатели ударной прочности и стойкости к катодному отслаиванию. Для повышения стойкости покрытий к катодному отслаиванию фирма Ниппон Кокан (Япония) производит очистку поверхности труб в две стадии. На первой стадии удаление прокатной окалины осуществляется на дробеметной установке с помощью смеси стальной колотой дроби и дроби из белого чугуна. На второй стадии с целью получения соответствующего профиля поверхности и развитого микрорельефа очистка производится стальной колотой дробью. После очистки производится дополнительная химическая обработка (оксидирование) наружной поверхности трубы путем ее смачивания растворами, в состав которых входят фосфорная кислота, смола полиакриловой кислоты, щелочный цинк хромовой кислоты. Образованная на поверхности металла оксидная пленка толщиной в несколько микрон обладает высокими адгезионными свойствами, выполняет роль связующего между эпоксидным покрытием и стальной поверхностью и позволяет снизить величину катодного отслаивания изоляции. [c.131]

    Пленки коллодия обладают свойством скручиваться и склеиваться, поэтому для консервирования лучше применять водную эмульсию полимера (эфира полиакриловой кислоты, поливинилиденхлорида и поливинилпройио-ната), напыляемую на готовую хроматограмму [20]. Подобная эмульсия имеется в продаже под названием неатан (фирма Мегск , Дармштадт). Для лучшего распыления удобнее эту эмульсию разбавить метанолом. [c.51]

    Определение рКа Для молекул с большим числом ионизирующихся групп представляет трудности даже в том случае, когда все группы вещества структурно идентичны, например в полиакриловой кислоте. Высокий молекулярный вес таких веществ придает им особые свойства, благодаря которым их можно отнести, наряду с полипептидами и нуклеотидами, к классу соединений, исследуемых биофизиками. [c.52]

    Иониты на основе высокомолекулярных соединений. Основой (матрицей) таких ионитов являются фенолальдегидпые, амияоальдегидные, полисти-рольные смолы и смолы на основе полиакриловой кислоты. Ионогенные группы в них вводят в процессе конденсации или полимеризации. В зависимости от свойств этих групп различают сильные и слабые катиониты и аниониты. [c.372]

    Важную роль играют ПАВ в составах для шлихтования, предназначенных для нанесения на поверхность нитей ткацкой основы тонкого слоя в целях увеличения сопротивляемости нитей истиранию и воздействию циклических деформаций растяжения в процессе ткачества. Основу шлихтующих составов чаще всего составляют сополимеры поливинилового спирта, полиакриловой кислоты, водорастворимые производные целлюлозы и другие высокомолекулярные соединения. Различные типы ПАВ используют для улучшения свойств шлихтующих составов в качестве антистатиков, мягчителей, а также эмульгаторов, пластификаторов и диспергаторов компонентов, входящих в эти составы, что в конечном итоге позволяет регулировать реологические свойства шлихтующих составов и повышать адгезию пленкооб-разователя к нити. Для этих целей применяют четвертичные аммониевые соли, замещенные имидазолины, алкилфосфаты, производные высших алкиламинов и другие соединения. [c.165]

    Однако при использовании более полярных органических разбавителей, в которых образование димеров, связанных водородными связями, менее вероятно, получают устойчивые дисперсии полиакриловой кислоты. Привитой стабилизатор выбирали в соответствии со свойствами применяемого разбавителя. Для получения дисперсий в этилацетате использовали стабилизатор на основе поли(метилметакрилат-со-глицидилметакрилата), обработанного метакриловой кислотой. Для получения дисперсий полиакриловой кислоты в хлороформе и смесях хлороформ—этанол использовали гликольфталатный полиэфир, содержащий концевые метакрилатные группы (детальную рецептуру см. раздел V.7, стр. 259). [c.234]

    Вопросам изучения светорассеяния, осмотического давления и реологических свойств растворов полиакриловой кислоты посвящены и другие работы 2428-2432  [c.607]

    Химич. свойства М. связаны с природой функциональных групп, входящих в состав М. Специфическими химич. реакциями М. являются 1) деструкция полимеров, приводящая к разрыву цепей и снижению мол. веса 2) структурирование (см. Вулканизация), т. е. возникновение химич. связей между различными М., приводящее к возрастанию мол. веса и в пределе к образованию сплошной сетчатой структуры (см. Структурирование полимеров пространственное), 3) реакции присоединения и отщепления пизкомолекулярных веществ без изменения степени полимеризации, приводящие к образованию поли-мераналогов (напр., этерификация целлюлозы с получением простых и сложных эфиров целлюлозы, омыление поливипилацетата с получением поливинилового спирта, внутримолекулярное отщепление воды от полиакриловой кислоты с получением полиангидрида и т. п.). [c.518]

    Физические свойства. Ньюман, Кригбаум, Ложье, Флори [972] предложили для полиакриловой кислоты уравнение, связывающее вязкость раствора с молекулярным весом [ri] = к- где к = ф о/ Ж) =0,85 дл/г. [c.380]

    Другие соединения этого типа представляют собой преимущественно полимерные антистатические препараты, которыми обрабатывают поверхность различных видов пленок. В качестве конкретных примеров могут служить натриевые и калиевые соли полиакриловой кислоты или ее сополимеров [62, 66, 184, 258, 274]. Более п.одробно было изучено применение сополимеров метакрилата калия с метилметакрилатом для антистатической обработки подложек пленок [118]. Изменяя мольное соотношение основных компонентов сополимера, можно получить продукты с различной растворимостью и антистатическим эффектом. По мере увеличения содержания метакрилата калия антистатический эффект возрастает, а растворимость смещается от неполярных растворителей к полярным. При введении в сополимер 60% метакрилата калия получаются водорастворимые продукты. Оптимальными свойствами обладают сополимеры, содержащие 30—40 мол.% метакрилата калия они хорошо растворяются в органических растворителях и дают относительно высокий антистатический эффект. Было установлено (это справедливо и для других полимеров), что антистатический эффект обеспечивается главным образом за счет металлических ионов. [c.114]

    Образование перекисных и гидроперекисных групп в макромолекуле полипропилена может быть осуществлено более просто окислением волокна на воздухе при 100° С. Этим методом удалось привить к полипропиленовому волокну полиакриловую кислоту 51. Если прививку мономера проводить в присутствии солей двухвалентного железа (в частности, Ее804), то количество гомополимера резко уменьшается, а в ряде случаев он вообще не образуется. Благодаря этому устраняется один из основных недостатков данного метода модификации свойств полимеров и, в частности, полипропиленового волокна. [c.273]

    Исследованы динамические мембраны, приготовленные на керамической подложке, с использованием целого ряда различных субстратов органических поли-электролитов, коллоидных дисперсий гидроксидов, растворов гидролизующихся солей, слабосшитых ионо-обменников, некоторых природных продуктов (глин, гуминовых кислот и т. д.). Из органических полиэлек-гролитов наилучщие результаты получены для полиакриловой кислоты, которая, в отличие от многих дру1их, достаточно сильно диссоциирована в нейтральной области и обладает хорошими мембранообразующими свойствами. [c.377]


Смотреть страницы где упоминается термин Полиакриловая кислота свойства: [c.190]    [c.324]    [c.83]    [c.204]    [c.178]    [c.34]    [c.34]    [c.484]    [c.8]    [c.502]   
Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 3 выпуск 1 книга 2 (1959) -- [ c.380 , c.381 ]

Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6 (1961) -- [ c.0 ]

Химия мономеров Том 1 (1960) -- [ c.414 ]




ПОИСК





Смотрите так же термины и статьи:

Кислоты свойства

Полиакриловая кислота



© 2025 chem21.info Реклама на сайте