Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Глутамин в крови

    О нарушении обмена аминокислот в целостном организме судят не только по количественному и качественному составу продуктов их обмена в крови и моче, но и по уровню самих свободных аминокислот в биологических жидкостях организма. Большинство тканей характеризуется своеобразным аминокислотным спектром . В плазме крови он примерно соответствует аминокислотному составу свободных аминокислот в органах и тканях, за исключением более низкого содержания глутамата и аспартата и более высокого уровня глутамина, на долю которого приходится до 25% от общего количества аминокислот. Цереброспинальная жидкость отличается меньшим содержанием почти всех аминокислот, кроме глутамина. Аминокислотный состав мочи резко отличается от аминокислотного состава плазмы крови. Оказывается, у человека, получающего полноценное питание, аминокислотный состав мочи более или менее постоянен изо дня в день, но у разных людей с почти одинаковым аминокислотным составом плазмы состав аминокислот в моче может оказаться совершенно различным. [c.464]


    В состав остаточного азота входит также азот аминокислот и полипептидов. В крови постоянно содержится некоторое количество свободных аминокислот. Часть из них экзогенного происхождения, т.е. попадает в кровь из пищеварительного тракта, другая часть аминокислот образуется в результате распада белков ткани. Почти пятую часть содержащихся в плазме аминокислот составляют глутаминовая кислота и глутамин (табл. 17.2). Содержание свободных аминокислот в сыворотке и плазме крови практически одинаково, но отличается от уровня их в эритроцитах. В норме отношение концентрации азота аминокислот в эритроцитах к со- [c.581]

    Содержание белка в цереброспинальной жидкости незначительно (0,15— 0,40 г/л), причем отношение альбумины/глобулины равно 4 липидов в сотни раз меньше, чем в плазме крови. Возможно, что липиды плазмы крови в цереброспинальной жидкости отсутствуют. Общее содержание низкомолекулярных азотсодержащих веществ, особенно аминокислот, в 2—2,5 раза меньше, чем в крови. В ткани мозга, как отмечалось, количество свободных аминокислот велико и во много раз превышает концентрацию их в крови и тем более в цереброспинальной жидкости. Установлено, что некоторые аминокислоты (например, глутаминовая кислота) почти не проникают через гематоэнцефалический барьер. В то же время амиды аминокислот (в частности, глутамин) легко преодолевают этот барьер. Содержание глюкозы в цереброспинальной жидкости относительно велико (2,50—4,16 ммоль/л), но несколько меньше, чем в крови, причем концентрация глюкозы в спинномозговой жидкости может повышаться или снижаться в зависимости от изменений содержания глюкозы в крови. [c.644]

    Функции аспарагина в определенной степени сходны с функциями глутамина. Так же как и глутамин, аспарагин является одной из 20 аминокислот, входящих в состав белков осуществляет транспорт КНз крови в нетоксичной форме способен частично выводиться из организма с мочой. [c.390]

    Часть свободных аминокислот попадает в кровь в процессе пищеварения, другая — эндогенная — часть образуется в результате распада белков тканей. В сыворотке содержание свободных аминокислот составляет 2,7—4,6 ммоль/л. Аминокислотный спектр сыворотки соответствует аминокислотному спектру свободных аминокислот в органах и тканях, за исключением более низкого содержания аспартата и глутамата и повышенного содержания аспарагина и глутамина (25%). Изменение содержания общего аминного азота в сыворотке и моче может служить одним из показателей превалирования катаболических или анаболических процессов в организме, сопровождающих ряд патологических состояний. [c.409]


    В печени происходит затем превращение образовавшегося аммиака в мочевину. Глутамин-это та форма, в которой главным образом и транспортируется аммиак в крови здоровых людей его содержание существенно превышает содержание других аминокислот. [c.587]

    Эти различия обусловлены анатомическими и физиологическими различиями указанных групп животных, связанными со средой их обитания. У костных рыб аминный азот транспортируется кровью в виде глутамина, но через жабры он выводится в виде аммиака, потому что в жабрах содержится глутаминаза, катализирующая гидролиз глутамина, приводящий к образованию глутамата и аммиака. Поскольку аммиак легко растворим в воде, он быстро разбавляется и уносится током воды, в большом количестве омывающей жабры. Костным рыбам, следовательно, не требуется сложной мочевой системы для выделения аммиака. [c.588]

    Алании и глутамин в крови. В плазме крови содержатся все аминокислоты, необходимые для синтеза белков в организме, но в разных количествах. При этом концентрации двух аминокислот, а именно аланина и глутамина намного выше, чем остальных. Объясните возможные причины высокого содержания этих двух аминокислот. [c.777]

    Метаболизм глутамата в мозгу. Глутамат, доставляемый кровью в ткань мозга, превращается там в глутамин, который можно обнаружить в оттекающей от мозга крови. Каков смысл этого метаболического превращения Как оно происходит В действительности в мозгу вырабатывается больше глутамина, чем может образоваться из доставляемого кровью глутамата. Откуда берется это дополнительное количество глутамина  [c.777]

    Клетки, выращиваемые в тканевой культуре, могут утратить способность к ряду обменных превращений. Вполне вероятно, однако, что лишь некоторые виды клеток животного организма осуществляют такие реакции, как синтез глутамина или превращение фенилаланина в тирозин. По-видимому, глутамин синтезируется в определенных клетках и переносится к другим током крови. Интересно отметить, что минимальная концентрация глутамина, необходимая для оптимального роста тканевых культур, значительно выше, чем необходимые. концентрации других аминокислот. Количество глутамина в крови также значительно превосходит содержание в ней других аминокислот (табл. 3). [c.132]

    Ван-Слайк и его сотрудники [65] в опытах на собаках с выведенными под кожу почками показали, что большая часть аммиака мочи образуется за счет амидного азота глутамина. Эти авторы параллельно определяли концентрацию глутамина в крови почечных сосудов и образование аммиака мочи. В ряде опытов было отмечено, что то количество амидного азота [c.174]

    Аммиак всасывается также из кищечника, где он образуется в результате действия уреазы бактерий и при других реакциях (стр. 173). Через воротную вену аммиак переносится в печень, где переходит в мочевину. В печени и в ряде других тканей (например, в мозге) аммиак превращается в амидную группу глутамина. Высокая активность механизмов, участвующих в связывании аммиака, подтверждается тем, что в норме содержание свободного аммиака в крови и тканях млекопитающих очень невелико [8]. [c.464]

    Предполагается участие этого фермента в мембранном транспорте глутамата. Известно, что биологические мембраны более проницаемы для глутамина, чем для глутамата, и глутаминаза может участвовать в превращении глутамина крови во внутриклеточный глутамат. Глутаминаза играет важную роль также в регуляции содержания глутамата в нервных окончаниях. Тот факт, что глутаминсинтетаза локализована в основном в глиальных клетках, а глутаминаза наиболее активна в нейронах, а также то, что глутамин оказался главным предшественником глутамата и ГАМК, выполняющих трансмиттерную функцию, послужил основанием для концепции о существовании глута- [c.47]

    L-r. к. встречается во всех организмах в своб. виде (в плазме крови вместе с глутамином составляет ок. /з ех своб. аминокислот) и в составе белков. Р-ция L-Г. к. + + NHj + АТФ глутамин + АДФ + Н3РО4 (АДФ-аденозиндифосфат) играет важную роль в обмене NHj у животных и человека. В организме декарбоксилируется до у- [c.588]

    Из ми. периферич. тканей (в т. ч. из мозга) ЫН/ поступает в печень в виде глутамина, к-рый в отличие от глутаминовой к-ты способен легко проникать через клеточные мембраны и транспортироваться кровью в печень, где под действием глутаминазы превращ. в глутаминовую к-ту и КН/  [c.409]

    Общее содержание аминокислот в ткани мозга человека в 8 раз превышает концентрацию их в крови. Аминокислотный состав мозга отличается определенной специфичностью. Так, концентрация свободной глутаминовой кислоты в мозге выше, чем в любом другом органе млекопитающих (10 мкмоль/г). На долю глутаминовой кислоты вместе с ее амидом глутамином и трипептидом глутатионом приходится более 50% а-аминоазота головного мозга. В мозге содержится ряд свободных аминокислот, которые лишь в незначительных количествах обнаруживаются в других тканях млекопитающих. Это у-амино масляная кислота, К-ацетиласпарагиновая кислота и цистатионин (см. главу 1). [c.634]


    Глутамин — это нетоксичная форма хранения и транспорта аммиака кровью в печень, почки, кишечник, где его освобождение происходит путем гидролитического отщепления, катализируемого глугаминазой. Реакция является экзэргонической и идет без затраты энергии АТФ  [c.389]

    Глутамин выполняет аналогичную функцию в организме животного. Как уже отмечалось выше, организм животного синтезирует определенные аминокислоты ( заменимые ), используя для этой цели аммиак, образующийся при дезаминировании или пероаминировании пищевых белков или собственных белков организма. Однако аммиак токсичен для организма животного и образуется в крови лишь в крайне малых концентрациях. Установлено (Кребс), что почечная ткань содержит фермент, катализирующий образование глутамина из глутаминовой кислоты. Эта эндэргонная реакция происходит с участием аденозинтрифосфорной кислоты [c.396]

    Глутамин был идентифицирован в большом количестве во многих тканях и в крови. Здесь глутамин служит, вероятно, резервом аммиака. Он синтезируетси в тканях, когда последние содержат избыток аммиака, и гидролизуется в том. случае, когда необходим аммиак для синтеза аминокислот. Гидролиз происходит под действием фермента — глутаминазы, который также был обнаружен во многих тканях. Таким путем организм животного, который не в состоянии откладывать запасы аминокислот или белков, имеет возможность запасаться достаточно большими количествами аммиака в нетоксичной форме. [c.396]

    У большинства животных аммиак превращается сначала в нетоксичное соединение и лищь в таком виде переносится кровью от периферических тканей к печени или почкам. Во многих тканях, включая и мозг, аммиак взаимодействует с глутаматом в ферментативной реакции, катализируемой глутаминсинтетазой, в результате чего образуется глутамин [c.586]

    У большинства наземных животных глутамин доставляется кровью в печень. Здесь он под действием фермента глу-таминазы превращается в глутамат и аммиак [c.587]

    У аммониотелических животных аминогруппы от различных аминокислот передаются в реакхщях трансаминирования на а-кетоглутарат, что приводит к образованию глутамата. В митохондриях печени при участии глутаматдегидрогеназы происходит окислительное дезаминирование этого глутамата с образованием свободного аммиака. Будучи крайне токсичным, свободный аммиак не может транспортироваться кровью он включается в виде амидной группы в глутамин, образующийся под действием глутаминсинтетазы. Нетоксичный нейтральный глутамин затём переносится кровью в жабры. Здесь он теряет свой амидный азот, который отщепляется в виде иона аммония (НН ) в реакции, катализируемой глутаминазой [c.589]

    Это тоже одна из важных центральных реакций в обмене аминокислот, потому что это главный путь превращения свободного аммиака, который, как известно, токсичен, в нетоксичный глутамин для переноса кровью (разд. 19.12). Глутаминсинтетаза-аллостерический фермент. У Е. соН и других прокариот каталитическая активность глутаминсинтетазы регулируется несколькими метаболитами, [c.655]

    Интересны данные о содержании аминокислот в плазме крови человека [326]. Главным аминокислотным компонентом плазмы является глутамин на его долю приходится около Д всего содержания аминокислот. Глутаминовая и аспарагиновая кислоты присутствуют в плазме в сравнительно небольшом количестве. Содержание аланина, валина, пролина и лизина выше, чем остальных аминокислот. Наконец, заслуживает внимания наличие в плазме аспарагина, орнитина, цитруллина и таурина. [c.63]

    До последнего времени выращивание клеток в тканевой культуре проводили на сложных средах, неопределенных по составу. Фишеру и сотрудникам [100—102] удалось показать относительную потребность миэлобластов куриного эмбриона в ряде аминокислот (глутамин, аргинин, цистин, триптофан, гистидин, пролин) в качестве стимуляторов роста. Ими было также установлено, что для роста клеток млекопитающих в культуре тканей необходим глутамин [101]. Игл [103, 104] разработал метод культуры тканей, позволяющий определять потребность клеток в отдельных аминокислотах (и других соединениях). Таким образом, появилась возможность выращивать клетки млекопитающих (включая клетки карциномы человека) на средах, состоящих преимущественно из известных химических компонентов. Состав основной среды, используемой в этих исследованиях, приведен в табл. 13. Помимо перечисленных составных частей, необходимо добавлять к среде небольшое количество диализованной сыворотки крови. Но, по-видимому, сыворотка не играет здесь роли источника аминокислот. Как фибробластам мыши, так и раковым клеткам человека необходимо для роста наличие 13 Т-амино-кислот соответствующие О-изомеры не активны. Одновременная потребность в цистине и метионине указывает на то, что эти [c.131]

    Образование аспарагина и глутамина имеет место и у животных получены убедительные доказательства важной роли глутамина в качестве резервной и транспортной форм аммиака в интактном организме животных [62]. Глутамин является одним из главных небелковых азотистых веществ крови у млекопитающих у человека на его долю приходится около 20% аминного азота крови. В жидкостях тела концентрация глутамина, как правило, выше концентрации глутаминовой кислоты в тканях наблюдаются обратные соотношения. Найдено, что глутамин переходит в клетки значительно легче, чем глутаминовая кислота. Так, например, при внутривенном введении экспериментальным животным глутамин (но не глутаминовая кислота) может проникать в мозг [63]. Установлено также, что глутамин всасывается в желудочно-кишечном тракте как таковой заметного гидролиза глутамина в процессе всасывания не происходит [18, 64]. Амидный азот глутамина подвергается в печени ряду превращений, в том числе превращениям, в итоге которых образуется мочевина. Амидная группа глутамина служит, кроме того, главным источником аммиака мочи. [c.174]

    В опытах на крысах было показано, что внутривенно введенный N -аммоний может выводиться как таковой [71] однако в физиологических условиях аммиак крови, по-видимому, не имеет существенного значения как источник аммиака мочи. Главную роль в образовании аммиака играют а) дезамидирование глутамина и б) действие ферментной системы, состоящей из глутамат-трансаминазы и глутаматдегидрогеназы. Следует учитывать также возможность участия в этом процессе глицин-оксидазы, поскольку в моче обнаружена глиоксиловая кислота [62]. Однако значение глициноксидазы в обмене веществ взято под сомнение [72] возможно, что глиоксиловая кислота мочи представляет продукт других превращений. [c.175]

    Многообразие реакций, для которых необходим витамин Во, свидетельствует о первостепенном значении этого витамина в процессах обмена аминокислот и дает основание полагать, что при Вб-авитаминозе должны возникать различные нарушения обмена. Опубликована обширная серия исследований над Вб-авитаминозными крысами [454—459]. Помимо ожидаемого изменения активности тканевых трансаминаз, при недостаточности витамина Ве было отмечено повышенное содержание мочевины в крови и пониженное содержание глутамина в кровяной плазме. Введение L-глутаминовой кислоты и L-лизина приводит к стойкому повышению содержания мочевины в крови. [c.258]

    В последнее время появились сообщения о лечении больных фенилкетонурией при помощи диеты с низким содержанием фенилаланина при достаточном содержании тирозина [166—169]. У некоторых больных, получавших бедный фенилаланином рацион, было отмечено некоторое повыщение умственных способностей. Весьма вероятно, однако, что этот способ лечения если и дает положительный эффект, то лишь в раннем возрасте, когда еще не развилось стойкое повреждение мозга. Ограничение количества фенилаланина в рационе приводит к значительному снижению фенилкетонурии и уровня фенилаланина в крови. Было предложено использовать для лечения наряду с ограничением приема фенилаланина введение глутамина. Известно, что введенный per os глутамин быстро поступает в мозг и в другие ткани поддержание достаточно высокого уровня глутамина в тканях могло бы способствовать подавлению образования фенилпирувата в тканях [161]. [c.479]

    Значительный интерес возбудили недавно полученные данные о высокой концентрации пептидов, содержащих остатки глутамина, в крови некоторых больных, страдающих целиа-кией ( elia disease). Предполагают, что у этих больных гидролиз глиадина в пищеварительном тракте доходит в основном лишь до пептидов, которые всасываются из кишечника. С появлением этих пептидов, по-видимому, связано токсическое [c.485]

    Первичным событием здесь является активация глутаматдегидрогеназы ионами известно, что этот фермент активируют как катионы, так и анионы, но механизм их действия различен. Образующийся в результате реакции глутамат служит донором аминогрупп для синтеза аланина и глицина (что способствует образованию этих двух аминокислот в тех случаях, когда возросшие концентрации ионов в крови должны быть осмотически уравновешены повышением содержания аминокислот внутри клетки). Обе аминокислоты, аланин и глицин, так же как и серии, тормозят по принцииу обратной связи реакцию глутамин-синтетазы — важный путь дальнейшего использования глутамата в результате этого концентрация глутамата может еще больше возрастать и он может использоваться для дополнительного синтеза аланина и глицина. Такого рода взаимодействия ведут к экспоненцио.льному повышению концентраций всех четырех аминокислот — глутаминовой кислоты, аланина, серина и глицина (рис. 44) первоначальным сигналом для запуска этого регуляторного каскада может быть что-то очень простое, вроде, например, изменения концентрации Ыа+ или С1 , происходящего сначала в окружающей среде, а затем в крови и, наконец, в клетке. Система этого тина является автокаталитической и автоматической изменение внешней солености очень быстро приводит к надлежащему сдвигу внутриклеточной концентрации аминокислот, поддерживающему осмотический баланс (а тем самым и постоянство объема клетки). [c.139]

    Подводя итоги, можно сказать о наземных брюхоногих моллюсках следующее (рис. 68). В периоды нормальной активности цикл мочевины совместно с уреазой функционирует у них циклическим и каталитическим образом цепь реакций начинается с ЫН и ведет к регенерации МН . В это время работа цикла мочевины не приводит или почти не приводит к расходованию азота. Основная масса ненужного азота направляется на путь синтеза мочевой кислоты лишь небольшая доля его может выделяться в виде в результате расщепления глутамина глутаминазой. В отличие от этого в период летней спячки весь азот выделяется в виде мочевой кислоты, что дает определенное преимущество при отборе, так как потеря воды при экскреции мочевой кислоты мниимальна. Но в то же время в связи с общим понижением интенсивности обмена количество синтезируемой мочевой кислоты уменьшается примерно до /4 обычной величины. Часть азота, которая в нормальных условиях превращалась бы в мочевую кислоту, появляется теперь в виде мочевины, так как во время спячки расщепление мочевины уреазой подавлено. Путь мочевины — это теперь уже не циклический каталитический механизм, а скорее синтетический процесс, приводящий к образованию значительных количеств мочевины и накоплению ее в крови. По-видимому, этот механизм выработался в результате отбора как приспособление, ведущее к снижению упругости водяных паров и, следовательно, снижающее потерю [c.196]

    Аммиак образуется при окислительном дезаминировании и аэробном декарбоксилировании аминокислот. Аммиак очень токсичен, так как он нарушает кислотно-основное равновесие. В печени происходит ряд реакций, в результате которых аммиак удаляется из организма. В цикле орнитин реагирует с двуокисью углерода и аммиаком с образованием цитруллина. Цитруллин превращается в аргининянтарную кислоту и затем в аргинин, который при гидролизе дает исходный орнитин и мочевину. Мочевина поступает с током крови в почки и уносится из организма с мочой, а орнитин возвращается в цикл. При декарбоксилировании глутаминовая кислота в печени реагирует с аммиаком и образует глутамин, который током крови переносится в почки, где он гидролизуется, давая аммиак и глутаминовую кислоту. Аммиак нейтрализует [c.341]

    Следовые количества аммиака присутствуют в сыворотке крови в виде ионов аммония. Транспортные формы аммиака — глутамин и аланин — выполняют две основные функции. Глутамин является донором амидной группы для биосинтезов пуриновых азотистых оснований, карбамоилфосфата, глюкозамина, триптофана и других соединений в тканях с выраженной пролиферативной активностью (кишечник, опухоли и др.), а также основным источником амидной группы для конечного обезвреживания аммиака в почках в виде аммонийных солей. Аланин транспортирует аммиак в виде аминогруппы в печень, где используется для синтеза мочевины, а оставшийся [c.260]

    Это временное обезвреживание аммиака. С током крови глутамин поступает в печень, где распадается опять на глутаминовую кислоту и КНз- Образовавшаяся глутаминовая кислота с кровью снова поступает в органы для обезвреживания новых порщ1й аммиака. Освободившийся аммиак, а также углекислый газ в печени используются для синтеза мочевины. [c.76]


Смотреть страницы где упоминается термин Глутамин в крови: [c.190]    [c.411]    [c.139]    [c.139]    [c.61]    [c.66]    [c.16]    [c.175]    [c.315]    [c.465]    [c.466]    [c.171]    [c.406]    [c.445]    [c.86]    [c.246]   
Основы биохимии Т 1,2,3 (1985) -- [ c.546 , c.718 ]




ПОИСК





Смотрите так же термины и статьи:

Глутамин



© 2025 chem21.info Реклама на сайте