Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карбанионы элиминирования

    Важнейшим фактором, определяющим сложность и многообразие процессов электросинтеза органических веществ, безусловно является наличие в суммарном процессе неэлектрохимических стадий. Синтезируемые в результате электронного переноса нестабильные промежуточные продукты — свободные радикалы и ион-радикалы, карбанионы и ионы карбония, — как правило, обладают высокой реакционной способностью и вступают в разнообразные химические реакции, которые в свою очередь могут состоять из нескольких стадий. К их числу относятся реакции протонирования и депротонирования, димеризации, полимеризации, сочетания, конденсации, гидратации и дегидратации, элиминирования отдельных групп, замыкания и размыкания циклов, изомеризации и другие. Часто имеет место химическое взаимо- [c.189]


    Первые два процесса осуществляются постадийно, с первоначальным отщеплением Н+ или Х . Элиминирование по типу (а), сопровождающееся образованием карбаниона, встречается сравнительно редко и ниже рассматриваться не будет. (Пример реакции этого типа — дегидратация альдолей в присутствии основания, разд. 7.1.4,В.) Вообще для осуществления подобных реакций необходима какая-либо стабилизация первоначального карбаниона, например за счет сопряжения с соседней карбонильной группой. Второй тип элиминирования (б) начинается с образования карбокатиона, за которым следует отщепление протона. Вероятно, такой механизм имеет место только в том случае, если промежуточный карбокатион — третичный. Следует отметить, что рассматриваемый процесс ионизации идентичен первой стадии SN 1-реакции. Установлено, что образование алкенов является важной побочной реакцией нуклеофильного замещения третичных галогенидов, практически не наблюдаемой при 5к2-реакциях. Третий путь элиминирования (а) включает согласованную атаку основания на протон и отщепление Х . Это направление элиминирования имеет большое значение для первичных и вторичных алкилгалогенидов (несколько примеров реакций подобного типа можно найти в разд. 3.3.1). [c.228]

    Существует еще один возможный механизм элиминирования, который также необходимо рассмотреть,— карбанионный механизм на первой стадии отщепляется протон и образуется отрицательно заряженная частица, называемая карбанионом. Этот механизм, как и Е2, находится в соответствии с рассмотренными уже фактами. [c.464]

    Синтетически важной реакцией карбанионов является алкилирование карбанионов алкилгалогенидами. Активность алкилгалогенидов обычно изменяется в последовательности иодиды > бромиды > хлориды. Обычно используют метилгалогениды, в случае других алкилгалогенидов с реакцией нуклеофильного замещения часто конкурируют процессы р-элиминирования и переноса протона. Ассоциация ионов может влиять на реакционную способность карбанионов, причем во всех изученных случаях реакционная способность свободных ионов была выше, чем для ионных пар. Кроме того, природа противоиона может влиять на региоселективность [c.561]

    З.З.6.З. Элиминирование через карбанионы [c.676]

    Относительно легкое нуклеофильное замещение по механизму присоединения/элиминирования (разд. 2.3.1) происходит по всем трем положениям при взаимодействии с широким кругом нуклеофилов, таких, как алкоксиды [41], сульфиды, амины, азид-, цианид- и малонат-анионы и родственные им карбанионы [42]. [c.585]


    Реакция, обратная процессу присоединения карбаниона к ненасыщенной С—С-связи, называется элиминированием. К реакциям такого типа относится также декарбоксилирование  [c.399]

    Короче говоря, можно предположить, что осуществляется механизм (рис. 7.19) элиминирования р- из р-фторпропионил-СоА [346], согласно которому основание В в ферменте отщепляет а-протон субстрата с образованием связанного с ферментом карбаниона. Отщепление происходит гораздо быстрее, чем перенос СО2 от биотина к карбаниону. После процесса элиминирования комплекс может разлагаться несколькими возможными путями, такими, как декарбоксилирование и освобождение акрилил-СоА. [c.486]

    ПО Михаэлю к двойным связям С = С. Как мы видели в т. 3, разд. 15.2, такое присоединение включает начальную атаку нуклеофилом с последующим протонированием. Таким образом, первоначальная потеря протона субстратами такого типа (т. е. механизм Е1сВ) согласуется с принципом микроскопической обратимости [42]. Высказывалось предположение, что все инициируемые основанием реакции элиминирования, в которых протон активирован сильными электроноакцепторными группами, происходит по карбанионному механизму [43]. Следует напомнить также, что образование дегидробензола (т. 3, разд. [c.21]

    Влияние на спектр механизмов реакции Е1—Е2—Е1сВ. а-Алкильные и сс-арильные группы повышают степень элиминирования Е1, поскольку они стабилизируют карбокатион в переходном состоянии. Иными словами, эти группы способствуют сдвигу спектра механизмов в сторону Е1. р-Алкильные группы также сдвигают механизм в сторону Е1, поскольку они понижают кислотность водорода. Однако р-арильные группы сдвигают механизм в другую сторону, к Е1сВ, за счет стабилизации карбаниона. Действительно, как уже было показано (разд. [c.33]

    Метод особенно удобен и перспективен для промышленного использования и уже нашел применение в промышленности тонкого органического синтеза, например, для алкилирования кетонов. Круг реакций, которые могут быть переведены на рельсы межфазного катализа, широк и многообразен и практически включает все реакции, проходящие с участием карбанионов,— реакции Кляйзена, Кнёвенагеля, Михаэля, Виттига — Хорнера, Кори и другие, а также различные типы реакций 0-, S-, N- и С-алкилирования, реакции нуклеофильного обмена, элиминирования, присоединения, а также реакции, включающие генерирование дигалогенкарбенов. [c.4]

    Карбанионы сульфоксидов и сульфонов проявляют свойства как сильного основания, так и мощного нуклеофильного агента, и это обстоятельство пшроко используется в современном органическом синтезе. Сульфинилкарбанионы легко взаимодействуют практически со всеми типами электрофильных реагентов, некоторые из наиболее ва жных превращений с участием сульфинилкарбаниоиов приведены ниже. Карбанионы сульфоксидов подвергаются алкилированию под действием первичных алкил-галогенидов, для вторичных и третичных КХ преобладающим направлением оказывается элиминирование  [c.944]

    С-Алкилирование щелочных енолятов ацетоуксусного эфира легко осуществляется под действием первичных алкилбромидов и алкилиодидов. Для вторичных алкилгалогенидов замещение всегда сопровождается элиминированием, а третичную алкильную группу этим методом вообще не удается ввести. В подобных случаях предпочтительным становится алкилирование не енолята, а самого енола под действием карбанионов тшн родственных им соедниений. Так, например, а-трет-бутилацетоуксусный эфир получается при взаимодействии ацетоуксусного эфира с комплексом т/7ет-бутилбромида с борфторидом серебра. [c.1351]

    Третий механизм -элиминирования состоит из быстрой стадии отщепления протона под действием основания с образованием стабилизированного кар-баниона и лимитирующей стадии — превращения карбаниона в алкен. Этот процесс, поскольку он осуществляется через сопряженное основание исходного соединения, обозначают El b. Реакции El b конкурируют с реакциями К2. Однако главным образом вследствие обычной нестабильности карбанио- [c.231]

    Реакция 1,1-дихлор-1-дейтеро-2,2,2-трифторэтана является примером -элиминирования, протекающего El b-механизму. Она показывает такн е, каким образом можно обнаружить карбанион, исходя из дейтерпрованного субстрата и используя OHQ/HOH, а не ODQ/DOD, [c.232]

    Реактив Гриньяра. Соединения типа И—Mg—X, чаще всего получаемые при реакции галогенида с металлическим магнием в эфире или аналогичном растворителе. Это весьлга реакппонноспособное соединение ведет себя так, как если бы оно имело строение карбаниона К МдХ . Нельзя получить устойчивый реактив Гриньяра, если по соседству с ка]1баннонным центром имеется достаточно сильная уходящая группа, поскольку такая ситуация приводит к элиминированию (образованию алкена). [c.247]

    Атака нуклеоф. агентами незамещенного Д. идет по положению 5, его арилзаме-щенных-по положению 3. С карбанионами и соед. с активированными метиленовыми группами арилзамсщенныс Д. реагируют с элиминированием серы, напр.  [c.94]

    Еслн один из заместителей в генерир. карбанионе способен легко уходить в внде аниона, то стабилизация нового аниона может ос.м ествляться с элиминированием этого заместителя (чаще всего галогена) с послед, образованием цикло-пропанового кольца, напр.  [c.94]


    Общепринятый механизм р-цин включает стадии образования а-карбаниона (фгла I), элиминирование галогенид- [c.176]

    Как и в случае реакции Фишера, на первой стадии циклизации азин превращается в диенгидразин. Это превращение обратимо, причем равновесие сдвинуто в сторону азина. Щелочной катализатор, не сдвигая само равновесие, заметно увеличивает скорость таутомерного превращения. Фенильная группа также способствует увеличению кислотности водорода соседней метиленовой группы и увеличивает вероятность образования енгидразинного таутомера. На следующей стадии происходит сигматропный [3,3]-сдвиг и затем (через несколько стадий, сопровождающихся элиминированием аммиака) образуется пиррольное производное. Вероятность протекания стадии образования углерод-углеродной связи как сигматропиого [3,3]-сдвига подтверждается самим фактом образования пиррольного соединения при проведении термолиза без катализатора при 300°С. Во всех случаях, кроме пирролов, были выделены и пиразолы, по-видимому, образовавшиеся по карбанионному механизму [77]. При попытке реализовать процесс для азинов жирно-ароматических кетонов нам удалось обнаружить их перегруппировку в пиразолины, сразу распадающиеся до циклопропанов [79-81] с высокими выходами. [c.85]

    На устойчивость а-С—Н-связи аминокислот сильно влияет характер заместителей. Особенно легко при катализе основаниями рацемизуются активированные эфиры М -бензилоксикарбониламинокислот, имеющие -заместители, оттягивающие электроны. Рацемизация через азлактоны в этом случае исключена. Предполагается [366], что в таких случаях рацемизация протекает путем прямого а-депротонирования, причем возникающий карбанион мезомерно стабилизируется. Механизм /3-элиминирования и обратного присоединения, который первоначально постулирован для рацемизации 4-нитрофенилового эфира М-бензилоксикарбонил-8-бензил-ь-цистеина, был опровергнут исследованиями Ковача и др. [367]. Изучение [c.174]

    Какое же строение имеет этот интермедиат и как из него образуется м-анизидин Для того чтобы объяснить ориентацию как на стадии элиминирования, так и на стадии присоединения, необходимо помнить, что метоксигруп-па проявляет электроноакцепторный индуктивный эффект. Поскольку элект-троны в карбанионах типа I и И (стр. 802) лежат вне плоскости л-электрон-ного облака, то возможность резонансного взаимодействия исключается и действовать может лишь индуктивный эффект вдоль о-связей (или, возможно, через пространство). [c.804]

    В такой сверхосновной системе многие реакции удается осуществить в гораздо более мягких условиях, а другие реакции идут исключительно в присутствии таких оснований. Здесь будут приведены только несколько примеров, представляющих интерес с препаративной точки зрения и связанных с ионизацией связей С—Н или N—Н. Образующиеся в реакции карбанионы могут далее претерпевать электрофильное замещение, изомеризацию, элиминирование или конденсацию [321, 322]. Недавно Бернас-кони и др. [769] опубликовали результаты систематического изучения влияния среды на собственные константы скорости реакций переноса протона между С—Н-кислотами и карбоксилат-ионами, а также аминами в качестве оснований в водном диметилсульфоксиде при различных концентрациях последнего. [c.330]

    На исход циклизации влияет число нитрогрупп в илидах. В случае илидов (2.619) пространственные препятствия более значительны, чем для (2.622), так как по отношению к карбаниону у них расположены в оуото-положениях по две нитрогруппы, одна из которых легко элиминируется в виде молекулы азотистой кислоты с образованием пиридазиноизоиндолов (2.620, й—в). В то же время илид (2.622) более деблокирован и не проявляет тенденции к элиминированию азотистой [c.188]

    Еслн у а- нли р-углеродных атомов карбаниона находятся подходящие уходящие группы, обычно галоген, то может протекать расщепление с образованием галогенид-ионов и нейтральных продуктов. а-Расщепление дает карбены или карбеиоидные частицы простейшим примером является образование дигалогенметиленов нз тригалогенметил-анионов. р-Расщепление приводит к олеф1шам и является одной из стадий элиминирования по механизму Е сВ. Этот путь образования олефинов молсет конкурировать со значительно более общим согласованным 2-механизмом только в тех случаях, когда у а-углеродного атома в карбанионе имеются стабилизующие заместители, а у р-углеродного атома — относительно трудно уходящие группы (например, ОН, ОРЬ [68]). Примерами соединений, дающих олефины через образование карбанионов, являются соединения (34) и (35). [c.561]

    В ЭТОЙ области было получено с помощью определения кинетической кислотности [110] при катализируемом основаниями обмене водорода на дейтерий или тритий. При этом было найдено, что в случае галогена, связанного с карбанионным центром (41), кислотность растет в ряду С1 > Р. В случае иода и брома важную роль могут играть участие -орбиталей и влияние пространственных затруднений, однако тот факт, что фтор оказывает самое слабое влияние на кислотность свидетельствует, что в этом случае отталкивание электронных пар эффективно компенсирует индуктивный эффект (42). Влияние хлора п фтора на кислотность можно сопоставить также по величинам констант ионизации замещенных нитрометанов, приведенных в табл. 3.13. Трудно провести оценку сравнительного влияния различных атомов галогенов находящихся у атома, связанного с карбанионным центром (43), поскольку в этом случае (3-элиминирование протекает чрезвычайно легко, однако, и в данном случае фтор по меньшей мере так же активен, как и хлор. [c.676]

    Аллильные группы, связанные л-связью с атомом никеля, должны, на первый взгляд, обладать реакционной способностью замаскированных карбанионов (/сршгго-карбанионов). Действительно, как показал Кори с сотр. [270, 271], эти лиганды способны реагировать с алкил-, алкенил- и даже с арилиодидами в ДМФ, давая продукты сочетания по Вюрцу (схема 241) (см. разд. 15.6.3.3 и 15.6.3.11). Кроме того, связанные с никелем аллильные лиганды могут присоединяться по типу реакции Михаэля к активированным двойным углерод-углеродным связям таких соединении, как акри-лонитрил [272] нли л-бензохинон [273] (схема 242). Тем не меиее участие карбанионов в катализируемых никелем реакциях образования простых углерод-углеродных связей маловероятно, и хотя ранее подобные процессы рассматривались как последовательность стадий окислительного присоединения и восстановительного элиминирования, в настоящее время для этих реакций предполагается радикально-цепной механизм (см. разд. 15.6.3.11). [c.309]

    Уникальным органическим лигандом является цианид-ион нуклеофильные свойства этого аниона не должны проявляться у цианидов переходных металлов. В то же вре.мя, хотя цианистый водород обычно не присоединяется к неактивированным двойным связям, такое присоединение катализируется октакарбонилдикобальтом [274]. Однако, если принятый для этой реакции механизм (схемы 243, 244) справедлив, катализируемое кобальтом присоединение H N к изолированным двойным связям ничего общего не имеет с обычным нуклеофильным присоединением, а представляет собой последовательность известных стадий (1) присоединение алкена к координационно иеиасьпценному атому кобальта, (2) миграция присоединенного лиганда ( N) с одновременной л —а-пере-группировкои (четырехцентровая перегруппировка), (3) 01<исли-тельное присоединение (в этом случае H N) и (4) восстановительное элиминирование алкилциаинда с регенерацией каталитически активной частицы (СО)зСоСЫ. Однако возможно, что карбанион- [c.309]


Смотреть страницы где упоминается термин Карбанионы элиминирования: [c.161]    [c.7]    [c.18]    [c.39]    [c.95]    [c.110]    [c.229]    [c.4]    [c.395]    [c.490]    [c.813]    [c.816]    [c.1286]    [c.247]    [c.489]    [c.579]    [c.21]    [c.321]    [c.347]    [c.380]    [c.42]    [c.399]   
Курс теоретических основ органической химии (1975) -- [ c.12 ]




ПОИСК





Смотрите так же термины и статьи:

Карбанион

Элиминирование Элиминирование



© 2024 chem21.info Реклама на сайте