Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидратация и подвижность ионов

    Необходимо отметить, что при очень больших концентрациях некоторых электролитов f вновь начинает расти, что объясняется недостатком молекул воды для гидратации всех ионов. Ионы, частично или полностью лишенные гидратной оболочки, особенно легко подвижны. Активность в подобных случаях оказывается выше действительной концентрации частиц, а коэффициент активности / становится больше единицы. [c.117]


    Данные по энтропии сольватации, по уменьшению диэлектрической постоянной и объема растворителя в присутствии ионов, а также по подвижности ионов в электрическом поле указывают на то, что часть молекул растворителя довольно прочно связана с ионами. Среднее число молекул растворителя, прочно связанных с одним ионом, называется числом сольватации (в водных растворах — числом гидратации) [c.27]

    Таким образом, характер гидратации определяется величиной Е. Расчет величины Е может быть сделан, исходя из влияния температуры на подвижность ионов (и ) и вязкость растворов (г] ). Па основании представлений о строении жидкостей Самойлов вывел уравнение Писаржевского — Вальдена [c.150]

    Поскольку структура приповерхностных водных слоев меняется в зависимости от температуры, то подвижность ионов, а следовательно, и скорость роста кристаллов (или аморфных новообразований) при температурах структурных перестроек должна иметь максимум. Разогрев вяжущей системы при гидратации сказывается на структурных особенностях граничных водных слоев и, поэтому, на кинетике гидратообразования. [c.86]

    Пользуясь изложенными соображениями, иногда по измеренной подвижности рассчитывают степень гидратации ионов. Полученные значения, хотя и не дают количественных представлений, однако могут служить качественной характеристикой, описывающей относительную гидратацию различных ионов. [c.32]

    С повышением температуры подвижность ионов сильно увеличивается, что объясняется уменьшением вязкости среды и степени гидратации ионов (табл. 16). [c.268]

    Величины скорости и подвижности ионов связаны определенным образом с размерами и массой ионов. Правильная закономерность уменьшения подвижности и электропроводности с увеличением размеров ионов наблюдается в расплавах солей. В водных растворах эта зависимость часто искажается вследствие неодинаковой степени гидратации ионов. Например, -подвижность иона лития в водном растворе меньше подвижности Ыа+ и других ионов щелочных металлов (высокая степень гидратации иона лития) в расплавах же его подвижность наибольшая по сравнению с Ма+, К+ и др., как и следует ожидать, исходя из размеров указанных ионов. Подвижность ионов сильно зависит от природы растворителя. Так, например, при бесконечно большом разбав- [c.268]


    В расплавленных солях и шлаках явление гидратации (или сольватации) отсутствует. Поэтому подвижности различных ионов заметно отличаются друг от друга в зависимости от их радиусов. Удельная электропроводность расплавленных шлаков увеличивается с ростом температуры. В большом числе случаев ее зависимость от температуры определяется уравнением а=Ле- / , где Л и — постоянные, зависящие от природы расплава. Отметим, что измерения электропроводности водных растворов используются в аналитической химии для определения эквивалентных точек в тех случаях, когда применение индикаторов невозможно, например, если растворы окрашены или содержат много взвешенных частиц. Так, при титровании сильными кислотами сильных оснований электропроводность раствора при нейтрализации будет минимальной, поскольку исчезают наиболее подвижные ионы НзО- - и 0Н , образующие воду. Титрование, основанное на измерении электропроводности, называется кондуктометрическим. [c.203]

    Подвижность ионов пропорциональна скорости их движения в электрическом поле и поэтому зависит от размеров и степени гидратации ионов. Чем больше радиус иона и чем выше степень его гидратации, тем меньше подвижность. [c.124]

    В водных р-рах сильных электролитов, не взаимод. с разделяемыми в-вами, подвижности ионов мн. элементов из-за, сильной гидратации име- [c.437]

    Проблемы физикохимии растворов и теории сольватации всесторонне рассматривались в литературе. Достаточно назвать ряд монографий, опубликованных в рамках данной продолжающейся серии, издаваемой Институтом химии растворов РАН [8-11]. В указанных монографиях глубоко проанализирован чрезвычайно широкий круг современных аспектов химии и термодинамики растворов. Это - влияние растворителя на состояние растворенных веществ и их взаимодействие в растворе, растворимость газов, гидрофобная гидратация [7], химические аспекты сольватации [8], строение и термодинамика образования молекулярных комплексов, комплексообразование и сольватация природных порфиринов [9, 10], химия растворов целлюлозы [10], термодинамические свойства и подвижность ионов [И] и многие другие. Каждая из названных проблем имеет прямое отношение к современной биофизической химии. [c.4]

    В случае цеолита типа А электропроводность возрастает с гидратацией до тех пор, пока содержание воды не составит приблизительно 5 молекул на каждую элементарную ячейку. Это эквивалентно гидратации 4 подвижных ионов натрия, локализованных в местах Зц и 3,,, вблизи 8-членных кислородных колец, образующих входные окна в а-полости. По-видимому, указанные центры обладают наиболее высокой энергией адсорбции. Комплексы вода — ионы натрия, локализованные в 8-членных кольцах, весьма эффективно блокируют входы в а-полости и препятствуют проникновению туда других молекул. Последнее обстоятельство подтверждают результаты определения физической адсорбции, показывающие, что в присутствии даже следов воды адсорбция газов типа кислорода не протекает. [c.411]

    Задача количественной характеристики гидратации сводится к оценке А г- Если АЕ >0, то тг/т>1 (положительная гидратация, вызываемая ионами малого размера или с большим зарядом, например, Li+, F , AF+, La3+). Если Д , <0, то тг/т<1 (отрицательная гидратация, при которой молекулы воды вблизи иона становятся более подвижными, чем в чистой воде). Отрицательная гидратация возникает в растворах, содержащих ионы большого размера и с малым зарядом. [c.65]

    Современный курс водных растворов электролитов. В нем подробно рассматриваются вопросы зависимости концентрационных коэффициентов активности от гидратации ионов и вопросы подвижности ионов, [c.271]

    Определение чисел гидратации из подвижности ионов [c.276]

    Все методы, кото<рые мы рассмотрели, основывались на исследовании свойств ионов. Эти. методы позволяли в некоторых случаях установить числа гидратации отдельных ионов. -Такие определения возможны на основании данных о подвижности или скорости диффузии отдельных ионов. [c.279]

    Искажение квазикристаллической решетки приводит к появлению большего числа мономерных подвижных молекул растворителя. Это соответствует представлениям О. Я. Самойлова об отрицательной ближней гидратации некоторых ионов. К таким ионам относится, очевидно, ион НСО-, так как гидратация иона Са + происходит так же, как обычно, т. е. подвижность молекул воды вблизи иона Са + уменьшается. [c.31]

    Таким образом, из анализа ЯМР спектров следует, что нарущение квазикристаллической структуры воды, вызванное присутствием ионов, после магнитной обработки еще более усугубляется. Происходит увеличение отрицательной и уменьшение положительной гидратации соответствующих ионов, увеличивается число свободных мономерных, более подвижных молекул воды, и, как следствие, возрастает активность такой водной системы, что неизбежно отражается на ее физико-химических свойствах. [c.32]


    Значения подвижности большинства неорганических ионов близки друг к другу и являются величинами одного порядка. Существенно больше подвижность ионов 0Н и особенно ионов Н+. Для объяснения этого предложен особый механизм участия данных ионов в переносе тока. Если молекулы воды рассматривать как диполи, ориентированные определенным образом в электрическом поле, то при разряде на катоде иона Н+ освободившийся при этом ион ОН" связывает водородный ион соседней молекулы воды. Этот процесс передачи иона Н+ от одной молекулы воды к другой обусловливает большую подвижность этих ионов по сравнению с другими ионами, которые должны двигаться в водном растворе от одного электрода к другому. Кроме того, объем иона водорода меньше объема любого другого иона. Необходимо учитывать также, что в водных растворах ионы гидратированы и сопротивление их движению зависит от объема гидратированного иона. Обычно ионы Н+ гидратированы в меньшей степени, чем другие. Степень гидратации различных ионов характеризуется следующими цифрами  [c.48]

    Аналогичный механизм имеет место и в случае иона ОН . Значения мольной электропроводности для других ионов более близки между собой. Низкое значение мольной электропроводности для пикрат-иона является следствием его большого размера такое же влияние размера прослеживается в гомологических рядах ионов органических кислот — с увеличением размера подвижность падает. Однако у щелочных металлов наблюдается противоположная зависимость величин мольной электропроводности от их радиуса. Это обусловлено эффектами гидратации небольшой ион лития ориентирует и удерживает молекулы воды благодаря сильному ион-дипольному взаимодействию, тогда как более слабое притяжение молекул воды большими ионами приводит в итоге к эффекту разупорядочения структуры из-за того, что вблизи них наблюдается разрыв водородных связей между молекулами воды. [c.109]

    Гидратация ионов. На кинетику процессов электрохимической коррозии оказывает влияние гидратация — присоединение молекул воды к молекулам или ионам растворенного вещества. Гидратация обусловливает подвижность ионов в растворе электролита чем она больше, т. е. чем больше число молекул воды присоединено к иону, тем он менее подвижен, менее активен и тем, следовательно, затруднительнее участие ионов в процессе коррозии для воздействия на металл ионы электролита должны быть дегидратированы. [c.18]

    Разделение тг, В и rf, на ионные вклады производится в предположении о равенстве вкладов К+ и С1 . Простые ионы, которые по значениям А5 , г (разд. З.Г) и спектральным данным (разд. З.Б) относят к структурирующим, дают положительные значения В, отрицательные <1Л и времена переориентации тг, превосходящие эти величины для чистой воды. Такие ионы, следовательно, снижают вращательную и поступательную подвижность соседних молекул воды. Термодинамические и кинетические критерии в данном случае согласуются, указывая на преобладание положительной гидратации для ионов Li+, F , OH и для большинства двух- и многозарядных ионов. Полностью ли подавляется вращение молекул воды в первичной гидратной оболочке этих ионов Некоторые данные указывают на то, что для большин-- гва ионов этого в действительности нет. Время переориентации для совершенно жесткого комплекса М2+ (Н20)6 оценивается примерно величиной 10 10с при 25 °С [26]. тг для положительно гидратирован-ных катионов, хотя и превосходит значение для чистой воды, все же далеко от этого значения. Детальный анализ [430] данных по диффузии и магнитной релаксации 19F и 1Н в водных растворах фторидов также показывает, что изменение положения одного атома Н относительно другого происходит быстрее, чем изменение положения Н относительно F. Такой же результат получен для ионов лития [432]. Наконец, времена диэлектрической релаксации т , хотя и не коррелируют точно с тг, в присутствии любых ионов уменьшаются. Можно предположить, что положительно гидратированные ионы полностью иммобилизуют молекулы воды в первой координационной оболочке по тем степеням свободы, которые определяют ориентационный вклад в диэлектрическую проницаемость. Следовательно, т относятся к более удаленным молекулам воды, которые участвуют в отрицательной гидратации. Одновременное увеличение тг для этих ионов указывает на то, что некоторые из движений, существенных для релаксации 1 Н (например, вращение вокруг оси симметрия С2 молекулы воды в структуре 3), остаются не замороженными в первичной координационной сфере, тогда как движения, определяющие переориентацию электрических диполей воды, подавляются [16]. Только в случае А1 3+ равенство времен переориентации векторов Н-Н и А1—Н указывает на жесткую сольватацию в первичной координационной сфере [432]. [c.289]

    Аззам [15] исследовал вопрос о связывании ионами ближайших молекул воды, рассматривая при помощи методов статистической механики распределение диполей растворителя вокруг иона. Он установил критерий существования связывания и предложил способ определения числа связанных ионом молекул воды раствора. Аззам пришел к выводу, что связывание наблюдается при наличии таких ионов, как На+, К , С1 и т. д. В этих случаях, согласно Аззаму, ближайшие к иону молекулы-воды прочно с ним связаны, и молекулы воды и ион вместе ведут себя как замкнутое целое (имеется в виду отсутствие обмена). Аззам определил числа гидратации для ионов Н , Ц+, Ка" , К+, Rb+, Сз+, Р, С1, Вг", 1". В ряде работ [16—19] обоснована точка зрения, согласно которой ближнюю (или, по терминологии Бокриса, первичную) гидратацию ионов в водных растворах следует рассматривать не как связывание ионом какого-то числа молекул воды раствора, а как действие ионов на тепловое и, прежде всего, на трансляционное движение ближайших молекул воды. Это действие характеризуется величинами E — изменениями под влиянием ионов потенциального барьера, разделяющего временные положения равновесия молекул воды раствора, по сравнению с величиной потенциального барьера для чистой воды. Величины для различных ионов могут быть как положительными, что означает затруднение обмена ближайших к ионам молекул воды, так и отрицательными. В последнем случае обмен ближайших к ионам молекул воды в растворе происходит чаще, чем обмен ближайших молекул воды в воде вблизи ионов молекулы воды становятся более подвижными, чем в чистой воде. Это явление названо отрицательной гидратацией. Из катионов щелочных металлов отрицательная гидратация свойственна К" , НЬ+ и Сз+. Отрицательная гидратация ряда ионов в водных растворах подтверждается при экспериментальном исследовании самодиффузии воды в водных растворах электролитов. В самом деле, поскольку вблизи ионов с отрица- [c.51]

    Для электролитов с ионами разной зарядности теоретическое вычисление менее доступно. Вследствие образования ионных пар сложности возникают даже в разбавленных растворах. Подвижность ионных пар в этом случае несколько увеличена но сравнению с подвижностью свободных ионов, поскольку формирование ионных пар сопровождается уменьшением гидратации. Размер диффундирующей ионной пары меньше суммы размеров двух отдельных ионов. Вычисления а также отличаются некоторой неопределенностью. Несмотря [c.230]

    Специфические отклонения химических свойств лития и натрия от характеристик их тяжелых аналогов могут быть обоснованы количественно [39, 66 и др.]. На рис. 19, а представлено изменение важнейших физикохимических характеристик щелочных металлов с возрастанием атомного номера. Совершенно отчетливо проявляется немонотонность изменения всех свойств, заключающаяся в резком изломе всех кривых, приходящемся на калий. Действительно, такой излом наблюдается в ходе изменения атомных объемов и радиусов, ионизационных потенциалов, термодинамических характеристик, теплот гидратации, подвижностей ионов в электролитах, энергиях диссоцрхации двухатомных молекул и т. д. [c.83]

    Различные методы определения чисел сольватации часто дают несовпадающие результаты, причем величины л во многих случаях оказываются меньше координационного числа п, т. е. того числа молекул растворителя, которые составляют ближайшее окружение иона. Для объяснения этих результатов можно воспользоваться предложенной О. Я. Самойловым следующей динамической картиной явлений сольватации. Все частицы раствора — ноны и молекулы растворителя — находятся в непрерывном хаотическом движении, которое осуществляется за счет периодических перескоков этих частиц на расстояния порядка размеров молекул. Пусть Т1 — среднее время, в течение которого ион находится в неподвижном состоянии, а тг — время, необходимое, чтобы диполь растворителя, находящийся вблизи иона, порвал связь с другими диполями, изменил свою ориентацию и вошел в состав сольватной оболочки иона. Если Т1 Т2, то молекулы растворителя успевают порвать водородную или диполь-ди-польную связь с другими молекулами растворителя и войти в сольватную оболочку иона. В этих условиях ион окрулоет прочная сольватная оболочка и пн = пь. Поскольку согласно уравнению (II.9) электрическое поле иона тем сильнее, чем меньше его радиус, то это характерно для небольших ионов. Так, например, результаты по сжимаемости водных растворов солей лития, по энтропии гидратации и по подвижности иона дают среднее значение лл=б, соответствующее координационному числу иона лития. При условии Х1<Ст2 диполи растворителя в сольватной оболочке очень быстро меняются, а экспериментальное значение пл==0. Такой результат получается для ионов большого радиуса и малого заряда, например для ионов 1 и Сз+. При сравнимых Т1 и Т2 числа сольватации принимают значения от О до Пк, причем различные методы в неодинаковой степени отражают процесс замены диполей в сольватной оболочке иона, и это приводит к значительному расхождению результатов для Пн. [c.32]

    Первый случай соответствует связыванию близлежащих молекул воды во втором случае молекулы воды вокруг иона становятся более подвин ными. Последнее явление и названо Самойловым отрицательной гидратацией. Он считает, что представления об обмене в гидратной оболочке не противоречат тому факту, что гидратация ионов всегда сопровождается выделением большого количества энергии. По его мнению, большой эффект соответствует дальнейшей гидратации иона, хотя, как будет показано ниже, почти 70% энергии выделяется при гидратации за счет ион-дипольного взаимодействия. Самойлов считает, что установление отрицательной гидратации приводит к пебходимости отказаться от представлений о связывании молекул воды ионами. Он подчеркивает, что обмен молекул воды зависит не от полной гидратации, составляющей десятки килокалорий на моль воды, и полной энергии взаимодействия молекул воды со, также имеющей порядок (10 ккал/моль) 4186 10 Дж/моль, а изменения энергии на малых расстояниях Акя Аса, имеющих порядок (1 ккал/моль) 418 10 Дж/моль. За счет более быстрого падения энергии взаимодействия молекул при Я > со может иметь место соотношение Ак < Ао). Основываясь на развитых представлениях, Самойлов объясняет увеличение активности воды в растворах солей, ионы которых имеют отрицательную гидратацию, и рассматривает связь подвижности ионов с коэффициентами самодиффузии. [c.151]

    Все сказанное, естественно, в полной мере касается водных растворов, на которых мы далее сосредоточим внимание. В этом случае для сольватации используется специальный термин - гид ротация. Современные структурно-чув-ствительные физико-химические методы - рассеяние рентгеновских лучей и нейтронов, а также ядерный магнитный резонанс - подтверждают описанную картину состояния ионов в растворах и уточняют ее. Для большинства исследованных катионов характерно образование внутренней координационной сферы из шести молекул воды, т. е. катионы в растворе можно рассматривать как частицы [М(Н20)б] В то же время акс-лериментальные определения скорости диффузии и подвижности ионов под действием тока показывают, что в растворах с каждым ионом связано гораздо большее число молекул воды. Эти числа, называемые числами гидратации ионов, составляют, например, для в среднем больше 100, а для Сз - 5-10, так что и средний радиус гидратированного иона лития (приблизительно 0,340 нм) больше, чем у цезия (0,228 нм), хотя, конечно, радиус иона лития в кристаллах (0,060 нм) гораздо меньше, чем цезия (0,169 нм). [c.184]

    Ионитовые смолы и приготовленные на их основе ионитовые мембраны не имеют в своей структуре пор в обычном понимании этого слова [1, 2]. Переток молекул воды через мембрану происходит вследствие ее набухания, являющегося результатом гидратации активных групп и нейтрализующих их подвижных ионов 13]. Если ряд соприкасающихся гидратных оболочек соседних групп начинается на одной стороне мембраны и заканчивается на другой, то он является каналом, по которому вода проникает через мембрану [41. Сечение каналов в мембране, очевидно, должно увеличиваться с ростом ее набухаемости. Последняя зависит от вида противоиона и повышается с ростом полярности молекул растворителя. Ранее [5] была показана предпочтительная проницаемость ионитовой мембраны по отношению к парам легкой воды по сра вненню с тяжелой водой и установлена ее зависимость от вида насыщающего противоиона и содержания ОаО в исходной смеси. Было найдено, что различие в проницаемости по отношению к парам НаО и ВгО существенно уменьшается с ростом набухаемости мембраны. Можно полагать, что и гидравлическая протекаемость ионитовых мембран должна зависеть от их солевой формы и по отношению к НгО быть выше, чем к менее полярной ОгО. [c.65]

    Прохождение электрического тока сквозь растворы электролитов. Скорость, подвижность и электропроводность ионов. Зависимость скорости ионов от среды, температуры, напряжения, природы самого иона. Влияние гидратации (сольватации) на скорость ионов. Подвижности ионов (необходимо знать порядок величин). Законы Гитторфа. Числа переноса. Изменение концентрации у электродов и закон Фарадея. Практическое значение знания чисел переноса. Эквивалентная электропровэдность при данном и бесконечном разведении. Закон независимого движения ионов. Вычисление электропроводностей ионов л+ и X- из подвижностей ионоз, из чисел переноса и эквивалентной электропроводности при бесконечном разбавлении. Методы определения чисел переноса. Кулонометры. Схема соединения приборов при определении чисел переноса. [c.83]

    Числа гидратации, полученные принципиально различными методами, значительно отличаются друг от друга. В таблице 29 приведены данные -о сольватаиии ионов, полученные Реми из подвижности ионов, данные Уошборна, Розенфельда и Смита —из коэффициентов диффузии, данные Бринтцин-гера — из скорости диффузии ионов через мембрану и, наконец, данные Робинсона и Стокса, основанные на исследовании зависимости коэффициентов активности от концентрации. При расчетах принято, что гидратация анионов равна нулю. В таблице приведены числа гидратации, полученные при исследовании хлоридов. Числа, полученные при исследовании бромидов и иодидов, несколько больше. [c.283]

    В связи со сказанным нам кажется преждевременным отказыватьс5 от сложившихся представлений о том, что ион в растворе окружен облаком из молекул растворителя, движущихся вместе с ним. Однако механизм сольватации ионов, как будет показано дальше, далеко не ясен. Самым важным в связи с этим в работах Самойлова, нам кажется, является привлечение к рассмотрению свойств ионов в растворах (гидратация, подвижность) современных представлений о структуре жидкости. Большой интерес представляет обобщение Самойловым взглядов В. И. Данилова, М. И. Шахпаронова и других на изменение структуры растворов с концентрацией. Рентгеноструктурными исследованиями было показано, чтО концентрированные растворы электролитов, особенно при низких температурах, характеризуются структурами, близкими к структурам соответствующих кристаллогидратов, и координационные числа ионов соответствуют их координационным числам в кристаллогидратах. Таким образом, с ростом концентрации происходит переход от структуры чистой воды к структуре кристаллогидрата. Самойлов считает, что в некоторой области концентраций, особенно при низких температурах, в растворах [c.181]


Смотреть страницы где упоминается термин Гидратация и подвижность ионов: [c.35]    [c.13]    [c.28]    [c.276]    [c.244]    [c.99]    [c.61]    [c.44]    [c.294]    [c.296]    [c.180]    [c.290]   
Явления переноса в водных растворах (1976) -- [ c.541 , c.548 ]




ПОИСК





Смотрите так же термины и статьи:

Гидратация ионов

Ионная подвижность

Ионная подвижность Подвижность

Подвижность иона

Подвижность ионов



© 2024 chem21.info Реклама на сайте