Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Плутония оксалат

    Отделение плутония (III). При добавлении кристаллической щавелевой кислоты или ее солей к слабокислым (0,3—0,8 N) растворам плутония (HI) выпадает малорастворимый оксалат трехвалентного плутония Ри2(Сг04)з-ЭНгО [3, стр. 347, 587]. Избыток щавелевой кислоты после осаждения оксалата составляет 0,2 моль/л [3. стр. 347]. С повышением кислотности по минеральной кислоте растет растворимость оксалата трехвалентного плутония [3, стр. 347]. Мешают осаждению сульфаты, фосфаты, фториды, а также трех- и четырехвалентные катионы [9, стр. 277]. Осадок о-ксалата трехвалентного плутония устойчив только в инертной атмосфере. Этот факт в сочетании с малой избирательностью метода не позволяет использовать его в аналитической практике. Методика осаждения Pu2( 204)s ЭНгО описана на стр. 258. [c.298]


    Определению Ри(1У) в виде оксалата мешают фториды и сульфаты. Уксусная кислота не оказывает заметного влияния на осаждение оксалата плутония(IV) при концентрациях ее в растворе до 5%. В растворе должны отсутствовать органические соединения, осаждающие или связывающие плутоний в комп-. лексные соединения. Оксалатный метод особенно ценен возможностью полного отделения Pu(IV) от О(VI). При значительном содержании урана в растворе осадитель вводят в количестве, необходимом не только для осаждения плутония, но также для связывания ионов 1Ю2 +. [c.259]

    ПЛУТОНИЯ(1У) ОКСАЛАТА ГЕКСАГИДРАТ [c.450]

    Эти реакции, так же как реакции Pu(VI) с оксалат-ионами, е используются для приготовления низших валентных состояний плутония. Однако их надо учитывать в практике химико-аналитической и исследовательской работы. [c.75]

    Химический анализ полученных продуктов на плутоний, оксалат- и карбонат-ионы, щелочной металл или аммоний, а также в некоторых случаях на воду хорошо подтверждает их состав (табл. 9). [c.155]

    Несколько другой механизм разложения оксалата плутония (IV) предложен в работе [108]. Эти расхождения, очевидно, связаны с различными условиями проведения эксперимента и методами исследования. [c.98]

    Плутоний в различных окислительных состояниях образует большое число труднорастворимых соединений и экстрагируемых комплексов как с неорганическими, так и с органическими реагентами. Так, например, трехвалентный плутоний осаждается избытком аммиака или ш,елочи в виде гидроокиси голубого цвета, а четырехвалентный плутоний осаждается в виде гидроокиси бурого цвета из нитратных, хлоридных, сульфатных и перхлоратных растворов. Кроме того, плутоний образует целый ряд труднорастворимых соединений — иодаты, фториды, фосфаты, оксалаты и многие другие, в том числе и соединения с органическими реагентами. [c.122]

    Оксалат-, сульфат- и нитрат-ионы не мешают фотометрированию при весовых соотношениях к плутонию, равных 1 25, 1 25 и 1 5000 соответственно. [c.168]

    Экстракционному отделению плутония с теноилтрифторацетоном мешают сульфат-, фосфат-, фторид- и оксалат-ионы [556, 561]. [c.334]

    Гельман и охина [60, стр. 138 62] разработали метод выделения комплексных оксалатов в твердом виде. Ими получены и описаны соединения типов Мв4[Ри( 204)]4, где Ме—К+, Na+ и Мее [Pu( 204)s], где Ме — К" ", NH4 . Эти соли, так же как и Ри ( 204)2-6Н20, под действием собственного а-излучения Ри разлагаются либо до оксикарбоната Ри0 0з-2Н20, либо до смеси оксикарбоната плутония с углекислым натрием (калием). [c.45]

    Осаждение оксалатов плутония (III) и (IV) [c.258]


    В присутствии железа экстракция плутония значительно ухудшается (рис. 102). При этом само железо в виде купфероната также переходит в органический слой. Вместе с плутонием экстрагируются цирконий, ванадий и титан. Оксалат-, тартрат- и цитрат-ионы не мешают экстракции купфероната плутония(IV). [c.336]

    Осаждение оксалатов плутония [c.298]

    Весовые методы определения плутония обычно состоят из двух операций осаждение иона плутония в виде труднорастворимого соединения и переведение его в весовую форму. Хотя число труднорастворимых соединений плутония довольно велико, но весовой формой в большинстве случаев служит двуокись плутония, которая лучше других соединений удовлетворяет требованиям предъявляемым к весовой форме. Детальное исследование двуокиси плутония проведено в работах [48, 189, 237, 388, 554, 726, 732]. Прокаливанием и взвешиванием в виде РиОг заканчивается определение плутония после осаждения гидроокиси плутония, пероксида плутония, оксалатов трех- и четырехвалентного плутония и многих органических соединений плутония. Драмонд и Уэлч [388] показали, что состав двуокиси плутония в зависимости от метода приготовления может меняться от РиОг.оо ДО РиОг,09- Это небольшое изменение состава связано с дополнительным поглощением кислорода при температурах прокаливания до 1000 С. П. Н. Палей и М. С. Милюкова (1952 г.) установили, что для навесок около 20 мг при точности взвешивания 0,1- -0,2 мг, вес двуокиси достигает стехиометрического значения при 1050—1100° С за 3 часа прокаливания. Повышение температуры прокаливания до 1200° С приводит во всех-случаях к образованию двуокиси стехиометрического состава. Робертс и сотр. [189] изучали процесс окисления кислородом ряда образ- [c.252]

    Переход продуктов деления в органическую фазу снижается при введении комплексообразующих реагентов оксалатов, фосфатов и др. Присутствие фосфата в концентрации 0,1 моль/л снижает коэффициент распределения циркония почти в сто раз, фторосиликата (0,1 М) — в десять раз, сульфата (0,1 М) — в щесть раз [31]. При этом извлечение плутония также ухудшается. Так, при содержании в растворе 40% фосфорной кислоты коэффициент распределения Ри(1У) в отсутствие высаливателей снижается более чем на один порядок, а коэффициент распределения урана снижается примерно в полтора раза [247]. [c.323]

    Термическому разложению оксалата плутония (IV) посвяш,е-ны работы [108, 207, 571]. На рис. 35 Приведена термограви-грамма, полученная Скляренко и Чубуковой [207]. При нагревании на воздухе оксалат плутония в интервале teMHepaTyp от 30 до 110° С теряет 6 молекул воды. Небольшой горизонтальный участок кривой при температуре 120—150° С соответствует безводному оксалату плутония (IV). Дальнейшее уменьшение веса связано с разложением Pu( a04)2, в процессе которого образуется неустойчивое промежуточное соединение неизвестного  [c.97]

    Сорбция из других сред. Известны отрицательно заряженные, комплексы плутония с сульфат-, оксалат- и другими ионами. Однако методы анионного обмена из сульфатных и оксалатных сред не получили широкого распространения в связи с тем, что образование таких же комплексов свойственно многим другим элементам, обычно сопутствующим плутонию. [c.366]

    Особенно сильно сказывается саморадиолиз на физикохимических свойствах соединений таких интенсивных излучателей, какими являются заурановые элементы. Так, оксалат плутония за полтора года хранения практически полностью превращается в оксикарбонат. Оксалат же америция полностью превращается в карбонат всего за 20 суток. Радиоактивный (по азид серебра с удельной [c.214]

    Растворение оксалата плутония (III) Ри(С204)з-9 Н2О в 20%)-ном растворе К2С2О4 приводит к образованию комплексного оксалата плутония (III), устойчивого в присутствии избытка восстановителя — гидразингидрата или формальдегидсульфоксилата натрия (ронгалита) [58, 60]. Спектр светопоглощения такого раствора имеет максимумы поглощения при 563, 605, 665, 780, 910 и 1015 ммк (рис. 56). [c.155]

    Отделение оксалата плутония (IV). Метод может быть использован для отделения плутония от тех же элементов, которые отделяются при оксалатном осаждении четырехвалентного урана [9, стр. 277]. Растворимость оксалата четырехвалентного плутония с увеличением кислотности (до 1,0 М HNO3) уменьшается [34, стр. 310]. Однако для более полного отделения Pu(IV) от других элементов осаждение лучше проводить. из 2 М раствора кислоты (растворимость Ри ( 204)2 при этой кислотности возрастает незначительно). Совместно с плутонием в этих условиях количественно осаждаются торий, U(IV) и редкоземельные элементы. Ниобий в зависимости от его содержания также может частично осаждаться вместе с Pu(IV). Осаждению Pu(IV) мешают сульфаты, фосфаты, фториды и некоторые органические комплексообразующие вещества [9, стр. 277]. [c.298]

    При действии щавелевой кислоты на кислые растворы плутония (III), (IV) и (VI) образуются соответствующие труднорас-тйоримые оксалаты плутония. [c.95]


    В качестве исходных продуктов могут быть использованы различные соединения плутония нитраты плутония (IV) и (VI), оксалаты плутония (П1) и (IV) и др. Водный фторид, описанный в предыдущем разделё, может быть переведен в безводный нагреванием при 250—300° С [376]. На рис. 44 представлены кривые термического разложения водного (/) и безводного (2, 3) РиРз. Конечным Продуктом прокаливания является двуокись плутония, Безводный трифторид образуется в небольшом интервале температур 250—300°. Сравнение кривых 2 и 5 позволяет сделать заключение о гигроскопичности РиРз. Трифторид плутония окисляется при нагревании до 600° С свободным от влаги кислородом  [c.109]

    Гребенщикова и Брызгалова [69] показали, что Pu(IV) соосаждается с оксалатом лантана с образованием аномальных смешанных кристаллов с отсутствием нижней границы смешиваемости в интервале концентраций микрокомпонента от 10 до 10 М. Распределение Pu(IV) между оксалатом лантана и раствором может происходить и по закону Хлопина и по логарифмическому закону в зависимости от условий проведения соосаждения. Было также найдено, что в растворах, содержащих HNO3 от 0,5 до 1,5 Л/, с концентрацией щавелевой кислоты или оксалата аммония не более 0,1 М наблюдается максимальное обогащение кристаллов оксалата лантана плутонием (D — 21). Дальнейшее увеличение концентрации оксалатных ионов в растворе вызывает уменьшение коэффициента кристаллизации за счет [c.281]

    NH4)2 204 растворимость соединения растет вследствие образования растворимых оксалатных комплексов плутония (III). Изменение кислотности раствора существенно влияет на растворимость оксалата плутония (III) [3, стр. 347]. На рис. 31 представлена зависимость растворимости Pu2 ( 204)3 9НгО от концентрации водородных ионов. [c.96]

    Термическое разложение оксалата плутония (III) исследовали на пирометре Курнакова 108]. Полученные результаты приведены на рис, 32. Кривая термического разложения оксалата плутония (III) на воздухе (рис. 32,а) имеет максимум и минимум, соответствующие эндотермическому эффекту при 140° С и экзотермическому при 270° С. Обезвоживание в инертной среде также протекает при 140° С, однако безводный оксалат разлагается при температуре 330° С с образованием смешанного ок-салат-карбоната. При 460° С это соединение разлагается и одновременно происходит окисление Pu(III) до Pu(IV) с образованием двуокиси. При 140° С существует безводный оксалат трехвалентного плутония, а при 270°С происходит быстрое разрушение его до PUO2. Безводный оксалат Pu2 ( 204)3 получают нагреванием в вакууме при 225° С водного оксалата [3, стр. 347]. [c.96]

    При прокаливании пероксида плутония (IV) и оксалатов плутония (III) и (IV) получают наиболее реакционноопособную двуокись с почти стехиометрическим составом [60, 237]. Необходимым условием для получения чистой РиОг является образование этих соединений в кристаллической форме [519]. [c.106]

    Было найдено, что ацетаты, цитраты, оксалаты и тартраты изменяют формальный потенциал в достаточной степени для того, чтобы можно было проводить окисление плутония до че-тырех валентного без анодного растворения ртути. Более подробно в работе были исследованы цитраты, которые ранее были использованы для кулонометрического определения урана [306]. [c.222]

    Трихлорид плутония, РиС1з. Это соединение получают при действии на двуокись плутония сильных хлорирующих агентов, таких, как U, H I, S b или PO I3, при температуре выше 700° С. Пятихлористый фосфор реагирует с РиОа при 280° С [3, стр. 318 260]. Можно хлорировать также оксалат и карбонат плутония (111). Однако в этом случае получается продукт, загрязненный углеродом [260]. Возгонкой РиС1з при 800° С получают чистый кристаллический продукт. [c.110]

    Очень прочные тонкие слои плутония были получены Хлебниковым и Дергуновым [235]. В качестве катода использовали платину, никель, алюминий, а анодом служила платина, никель и графит. Электролиз проводили из слабощелочных оксалатных растворов. В электролизер помещали 1,5—2 мл раствора оксалата аммония и при интенсивном перемешивании добавляли 0,2 мл соляно- или азотнокислого раствора плутония (IV). Концентрированным раствором аммиака доводили pH до 8—9. Плотность тока составляла 100—150 ма/см . В течение 5—6 час. на катоде выделялось 95—98% плутония, а за 12—14 час.— 99—99,5%. По окончании электролиза препараты промывали водой, не содержащей СОг, подщелаченной аммиаком, и высушивали сначала на воздухе при комнатной температуре, а затем в сушильном шкафу при 80° С. Полученные в этих условиях пленки обладали хорошей прочностью. Авторы проверяли прочность слоев препаратов с плотностью 0,2 мг/см , протирая их активную поверхность сухим ватным тампоном. Потеря в весе вещества при этом составляла лишь 5—10%. [c.133]

    Определение плутония (IV). Четырехвалентный плутоний количественно осаждается в виде шестиводного оксалата [48, стр. 348]. Растворимость оксалата в воде равна 10,3-10" моль/л [57, 168]. В отличие от трехвалентного оксалата, остаточная концентрация плутония в растворе при осаждении оксалата плутония (IV) с увеличением кислотности уменьшается и оптималь-. ная концентрация HNO3 или H I составляет 3—4 М. Растворимость оксалата плутония(IV) существенно понижается в присутствии этилового спирта. Метод позволяет определять плутоний в присутствии большинства элементов за исключением тория, циркония и редкоземельных элементов. Оксалаты некоторых элементов (Ва, Мп, Со, Ni, РЬ, Sn, Sr), которые осаждаются в нейтральных растворах, остаются в растворе при достаточной концентрации кислоты >3N). При небольшом содержании указанные элементы полностью отделяются при одном осажде- [c.258]

    Спектр светопоглощения раствора, полученного обработкой гидроокиси трехаалентного плутония 45%-ным раствором К2СО3 или же обработкой оксалата плутония(III) 20%)-ным раствором (НН4)2СОз, имеет характерные максимумы поглощения при 565, 600, 835 и 920 ммк (рис. 57) (3, гл. 9]. [c.155]

    И. В. Моисеев (1953 г.) установил, что четырехвалентный плутоний количественно осаждается В-оксихинолином из аммиачного или бикарбонатного раствора (pH 4,5—12) в присутствии тартрат-ионов. Трехвалентный плутоний в этих условиях окисляется, и в осадок выпадает только 8-оксихинолинат четырехвалентного плутония. Последнее обстоятельство имеет большое практическое значение, так как осаждение 8-оксихинолином можно проводить из растворов, содержащих и трех- и четырехвалентный плутоний. В растворах не должен присутствовать Ри(У1), так как он образует осадок 8-оксихинолината другого состава. И. В. Моисеев (1953 г.) предложил применить 8-оксихинолинат плутония (IV) в качестве весовой формы при определении малых количеств (<30 мг) плутония. Тщательно промытый и высушенный при 120—130° С осадок имеет строго определенный состав Ри(СэНбНО)4. Содержание в нем плутония составляет 29,3%. Определение плутония данным методом можно проводить в присутствии и (VI) и щелочных металлов не мешают небольшие количества фосфатов, фторидов, оксалатов и гидроксиламина [10, стр. 39]. [c.260]

    Картину полярографического поведения плутония в оксалат-ной среде дополняет исследование Кука, Форемена и Кемпа [359], которые изучали восстановление шестивалентного плутония на ртутном капельном электроде. Было найдено, что в растворах,, содержащих ЫагСгО и Н2С2О4 с общей концентрацией 0,18 М, Ри(У1) дает обратимую волну восстановления до Ри(У) (/г 1) с потенциалом полуволны —0,207 в относительно нас.к.э. Для обеспечения устойчивости Ри(У) растворы должны иметь pH 3,5—4,5. Измерения производили при pH 4,2. Тем не менее,. предельный диффузионный ток увеличивается пропорционально концентрации Ри(У1) в степени 1,38 в интервале концентраций от 4,5 до 900 мг/л Ри(У1), что свидетельствует о существовании вторичных процессов. Авторы показывают, что таким процессом может быть диспропорционирование Ри(У), которое ускоряется комплексообразованием Ри(1У) и Ри(У1), а также прямое восстановление Ри(У) оксалат-ионами. [c.249]

    Осаждение Ри( ) гидроокисью аммония [3, стр. 329 48, 170] широко используется для отделения его от щелочных и щелочноземельных металлов, от малых количеств металлов, образующих аммиакаты (Сц2+, N1 +, 2п +, 0(1 +, А +), а также для концентрирования плутония в малом объеме [66, 368]. 0 бладая малой избирательностью, эта реакция используется для отделения плутония на последних стадиях очистки. Количественному осаждению мешают анионы, комплексующие плутоний карбонат, оксалат, фторид, фосфат, тартрат и некоторые другие. Осаждение также не дает удовлетворительных результатов, если раствор содержит большие количества цинка, хрома и бора, которые захватываются осадком гидроокиси плутония. [c.289]

    Наименее загрязненную двуокись плутония с составом, почти отвечающим сте сиометрии, получают при прокаливании пероксида плутония и оксалатов трех- и четырехвалентного плутония [3, стр. 169 237]. Прокаливание высушенных кристаллических оксалатов плутония (III) и (IV) и пероксида плутония (IV) производят при медленном повышении температуры от 25 до 700° С. Для предотвращения распыления осадка вследствие идущих одновременно процессов обезвоживания и разложения пероксид плутония (IV) необходимо нагревать в интервале температур от 90—200° С особенно осторожно. Сульфат-ион, входящий в структуру пероксида плутония (IV), улетучивается в виде SO3 при 600—700° С. Пероксид плутония осаждается в отсутствие сульфатов в виде мелкокристаллического осадка, содержащего другие -анионы, удаление которых происходит при более высокой температуре ( 1000° С). Оксалаты плутония следует прокаливать при температуре не ниже 900—950° С. Как уже отмечалось, для получения двуокиси плутония стехиометрического состава во всех случаях прокаливание проводят при 1050—1200° С. [c.253]

    Сплав растворяют в кипящей 16 М HNO3, содержащей 0,05 /И HF. Кислотность раствора снижают приблизительно до 1 М при помощи раствора NaOH и добавляют азотнокислый гидроксиламин до концентрации 0,05 Ai. Прибавляют нитрит натрия для разрушения оставшегося гидроксиламина и стабилизации плутония в четырехвалентном состоянии. Кислотность раствора доводят до 8 М при помощи конц. HNO3. Проводят 6-кратную экстракцию равным объемом свежеприготовленного экстрагента, содержащего 35 объемн. % вторичного амина, 10 объемн.% децилового спирта и 55 объемн.% растворителя ВТ фирмы Галф . Водную фазу отбрасывают. Органическую фазу встряхивают вначале с водой, при отношении объемов органической и водной фаз, равном 5 1 (для снижения содержания кислоты в органической фазе), и затем трижды с 0,1 М азотнокислым гидроксиламином при таких же соотношениях объемов органической и водной фаз. Водные реэкстракты, содержащие Ри(П1), объединяют и осаждают оксалат плутония (1П). [c.342]


Смотреть страницы где упоминается термин Плутония оксалат: [c.1978]    [c.140]    [c.450]    [c.39]    [c.45]    [c.95]    [c.95]    [c.97]    [c.97]    [c.97]    [c.98]    [c.98]    [c.186]    [c.258]    [c.282]   
Использование радиоактивности при химических исследованиях (1954) -- [ c.183 ]




ПОИСК





Смотрите так же термины и статьи:

Оксалат-ион

Осаждение плутония в виде оксалатов

Отделение плутония оксалатов

Отделение плутония оксалатом лантана

Плутоний

Плутоний III оксалат, получение

Плутоний оксалат, гексагидрат

Растворимость соединений плутония оксалатов

Соединения плутония оксалаты



© 2025 chem21.info Реклама на сайте