Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекула электронные структуры

    В некоторых случаях, без учета резонанса структур, в рамках метода ВС может получаться качественно неправильное описание электронной структуры молекулы. Так, для бензола ни одна из двух классических формул Кекуле не отражает реальной симметрии молекулы, а также ее физических и химических свойств. Другой пример — диоксид углерода СО2. Длина связи углерод — кислород в нем равна 0,115 нм, тогда как длина нормальной двойной связи С=0 (в кетонах) равна 0,122 нм, а расчетная длина тройной связи С = 0 — 0,110 нм. Т. е. связь углерод — кислород в СО2 оказалась промежуточной между двойной и тройной, что можно объяснить в терминах концепции резонанса  [c.169]


    Электронная структура н пространственное строение молекулы аммиака рассмотрены в 43. В жидком аммиаке молекулы NHj ((i=l,48D) связаны между собой водородными связями, что обусловливает сравнительно высокую температуру кипения аммиака (—33,4°С), не соответствующую его малой молекулярной массе (17 а. е. м.). [c.399]

    Химическое превращение -- это качественный скачок, при котором исчезают одни вещества и образуются другие. Происходящая при этом перестройка электронных структур атомов, ионов и молекул сопровождается выделением или поглощением теплоты, света, электричества и т. п. — превращением химической энергии в другой вид энергии. [c.158]

    Так как для разных по геометрической или электронной структуре молекул значения констант Генри, по крайней мере при подходящей температуре, обязательно различаются (поскольку они связаны с энергией молекулярного взаимодействия, разной для разных молекул, см. стр. 487 сл.), то теория равновесной хроматографии в области изотермы распределения Генри приводит к выводу об обязательном газо-хроматографическом разделении любых компонентов. В действительности этому мешают, во-первых, как мы уже видели, отклонения изотермы распределения (адсорбции, растворения) от изотермы Генри и, во-вторых, как мы увидим в дальнейшем, диффузионные и кинетические факторы. Эти причины приводят к асимметричному искажению и размыванию хроматографической полосы, что ведет к наложению полос близких по свойствам веществ друг на друга и поэтому мешает четкому разделению компонентов. [c.557]

    В методе ВС постулируется, что при образовании молекулы электронная структура, индивидуальность каждого атома сохраняются. В образовании связи участвуют только неспаренные электроны внешней электронной оболочки атома — валентные электроны. Сама связь — область повышенной электронной плотности — локализована между каждой парой атомов в месте перекрывания АО. [c.111]

    Оправдать такие льюисовы структуры О2 может только предположение об их резонансе, т.е. представление об истинной электронной структуре О 2 как о резонансном гибриде двух указанных выше структур с неспаренными электронами. Но такой подход представляется искусственным. Проще вместо льюисовых структур судить об электронном строении двухатомных молекул, пользуясь представлениями о молекулярных орбиталях. [c.529]

    Метод РФЭС применяют для получения информации об электронном и структурном строении молекул, электронной структуре твердых тел (металлов, полупроводников и диэлектриков), для [c.217]


    Особенность электронной структуры атомов элементов подгруппы меди обусловливает относительно большую устойчивость двухатомных молекул uj, А 2, Auj (энергия диссоциации соответст- [c.620]

    Электронная структура молекулы N20 рассмотрена в 41. [c.408]

    Электронная структура молекулы N0 лучше всего описывается методом МО, На рис. 116 представлена схема заполнения МО в молекуле N0 (ср. с аналогичными схемами для молекул N2 и [c.409]

    Черточка между символами элементов обычно используется как символ связи, осуществляемой парой электронов. Два атома фтора в молекуле Р, обобществляют одну пару электронов, в результате чего каждый атом Г приобретает электронную структуру Не [c.466]

    Мы видим, что в методе ВС далеко не всегда возможно с достаточной степенью точности представить электронное строение молекулы одной структурой (т.е. в приближении полного спаривания). В наибольшей степени это относится к л-электронным системам. Мы уже приводили в качестве примера молекулу бензола. Другим примером может служить нитрат-анион. Ему также можно сопоставить несколько способов спаривания п-орбиталей  [c.165]

    Рассмотрение NOJ и многих других молекул и ионов показывает, что используемая нами простая схема подсчета электронов и их отнесения к валентным оболочкам атомов в качестве связывающих или неподе-ленных пар не вполне удовлетворительна. К счастью, эту простую модель можно легко видоизменить таким образом, чтобы она охватывала многие более сложные случаи. В примере с N 2 суть проблемы заключается в том, что этот ион в действительности более симметричен, чем каждая из двух записанных для него выше льюисовых электронных структур. И если наложить друг на друга изображения этих структур, можно получить новую структуру, обладающую такой же симметрией, что и сама молекула. Метод наложения структур аналогичен такому способу записи структур  [c.477]

    У рр5 В образование связей могут вовлекаться З -орбитали на атоме Р. Атом N не имеет 2 -орбиталей. Молекула ОР2 может существовать, так как имеет электронную структуру 0 Р  [c.517]

    Химические свойства. Химические свойства молекулярного кислорода являются следствиями электронного строения его молекулы. Электронная структура молекулы О2 позволяет ей принимать один или два электрона на разрыхляюш ие т1 2р-орбитали [c.459]

    Однако с момента создания этой теории были ясны и ее недостатки. Так, она приводила к существенным трудностям при описании электронной структуры многоэлектронных атомов и молекул, требовала введения явно искусственных предположений при-рассмотрении интенсивностей спектральных линий и т. д. [c.17]

    Квантовохимический подход к прогнозированию гетерогенных катализаторов опирается на методы расчета электронной структуры молекул и твердых тел [7—11]. Наиболее фундаментальными свойствами твердых тел, определяющими характер хемосорбции и катализа на них, являются параметры их энергетической зонной структуры, такие, как энергия уровня Ферми, плотность состояний на границе Ферми, ширина энергетических зон и т. п. Реальная структура катализатора проявляется в деформации энергетических зон вблизи поверхности, наличие дислокационных дефектов, неупорядоченности структуры, а также в изменениях, порождаемых взаимодействием катализатора с субстратом. Все это необходимо принимать во внимание при прогнозировании катализаторов. [c.60]

    Основываясь на расчетах электронной структуры молекул и твердых тел, можно выделить три направления поиска эффективных катализаторов 1) анализ протекания химической реакции в силовых полях, создаваемых поверхностями испытуемых катализаторов 2) сравнительная характеристика электронной структуры сорбционных комплексов для разных катализаторов 3) при [c.60]

    Спектры ЭПР комплексов ионов переходных металлов дают быструю информацию об электронных структурах этих комплексов. Дополнительная информация и осложнения, характерные для систем ионов переходных металлов, обусловлены возможным вырождением /-орбиталей и тем, что многие молекулы содержат более одного неспаренного электрона. Эти свойства приводят к орбитальным вкладам и эффектам нулевого поля. В результате существования заметных орбитальных угловых моментов -факторы комплексов многих металлов очень анизотропны. Спин-орбитальное взаимодействие также приводит к большим расщеплениям в нулевом поле (от 10 см и больше) за счет смешивания основного и возбужденного состояний. [c.203]

    Рассмотрим теперь, как можно получить информацию об электронной структуре молекулы из величин д и т). Градиент поля на атоме А в молекуле и электронная волновая функция связаны уравнением [c.270]

    Молекула Электронная структура Порядок СИЯ И Длина соязн, нм Энергия связи, кДж/моль- [c.61]

    Хотя функции этих гемопротеинов сильно различаются несмотря на наличие общей простетической группы — железопрото-порфирина IX, мы не сможем здесь достаточно подробно обсудить взаимосвязь между структурой молекул, электронной структурой гема и функциональными особенностями всех этих белков. Подробно эти вопросы будут рассмотрены на примере гемоглобина и миоглобина, поскольку для установления взаимосвязи между стереохимией, электронными свойствами и функциональными особенностями этих двух белков можно привлечь не только информацию о структуре, полученную, при высоком разрешении, но и спектроскопические данные об электронной структуре железопорфириновой группы. На этой основе будет подробно рассмотрено взаимодействие простетической группы с белковым окружением. В результате этого обсуждения станет очевидной взаимосвязь между стереохимией железопорфиринового комплекса и функциональным поведением остальных гемопротеинов. Обсуждение гемоглобина и миоглобина будет проведено совместно, поскольку их структурные свойства и биологическая функция сходны. [c.32]


    Различают реакции с изменением и без изменения степеней окисления элементов. Понятно, что такое подразделение условно и основано на формальном признаке — возможности количественного определения условной величины — степени (состояния) окисления элемента. Неизменность степени окисления элементов при химических превращениях вовсе не означает, что не происходит перестройки электронных структур взаимодействующих атомов, ионов и молекул. Конечно, и в этом случае протекание реакции обязательно связано с большим или м(. ньшим изменением характера межатомных, межиошых и меж-молекулярных связей, а следовательно, и эффективных зарядов атомог . [c.207]

    Валентный слой атома аргона, как и неона, содержит восемь электронов. Вследствие большой устойчивости электронной структуры атома (энергия ионизации 15,76 эВ) соединения валентного типа для аргона не получены. Имея относительно больший размер атома (молекулы), аргон более склонен к образованию межмолекулярпых связей, чем гелий и неон. Поэтому аргон в виде простого вещества характеризуется несколько более высокими температурами плавления (—189,3"С) и кипения (—185,9°С). Он лучше адсорбируется. [c.496]

    Ранее уже отмечалось, что наличие заряда само по себе не изменяет ни геометрической, ни электронной структуры молекулы. Поэтому законно предположить, что структура карбоний-ионов IX должна быть Весьма похожей на структуру соответствующих производных бора (VIII). Другими словами, считается, что карбоний-ионы должны иметь плоскостные структуры, в которых три гибридные зр орбиты использованы для образования с-связой с тремя атомами или группами, соединенными с центральным атомом. Кроме того, должна остаться свободная орбита р, расположенная выше и ниже атома углерода в перпендикулярном направлении в плоскости, в которой лежит молекула. [c.394]

    В главах этой книги, посвященных растворам и адсорГции, показано, что растворимость газов в жидкостях и адсорбция газов на поверхности твердых тел определяются, помимо температуры и концентрации газа, химической природой газа и химической природой растворяющей жидкости или адсорбента. Различия в геометрической и электронной структуре молекул газа приводят к разной растворимости (или разной адсорбируемости) этих газов. Последнее обстоятельство обусловливает то, что при равновесии средние продолжительности жизни разных молекул в газовой фазе и в смежном с нею растворе (или на поверхности твердого тела) ири заданной температуре и заданных концентрациях этих молекул в газовой фазе неодинаковы. [c.543]

    Здравый смысл подсказывает, что описание этого иона требует участия всех трех структур. Но поскольку они не эквивалентны, символ резонанса больше не означает необходимости их равномерного смешивания, а лишь указывает на самую необходимость смешивания. Таким образом, двусторонняя стрелка не содержит количественной информации. Когда мы переходим к полуколичественному описанию электронной структуры молекул, приходится указать, что структура III дает больший вклад в резонансный гибрид нитроамидного иона, чем каждая из эквивалентных структур I и II, потому что в структуре III оба формальных отрицательных заряда расположены на атомах кислорода. [c.479]

    В главе XVIII показано, что теплота адсорбции зависит от геометрической и электронной структуры молекулы адсорбата и адсорбента. Следовательно, изменяя природу адсорбента (или неподвижной жидкости в газо-жидкостной хроматографии), мояс-но изменить времена удерживания и даже последовательность выхода компонентов. Для -алканов теплота адсорбции является линейной функцией числа атомов углерода (п) в молекуле (см. стр. 492, 493), поэтому при одной и той же температуре колонки [c.564]

    Травень В.Ф. Электронная структура и свойства органических молекул. -М. Химия, 1989. -383 с. [c.104]

    Во многих случаях ковалентные связи воз1П1кают и за счет спа-рс1П1ых электронов, имеющихся во внешнем электронном слое атома. Рассмотрим, например, электронную структуру молекулы аммиака  [c.130]

    Индукционное взаимодействие. В случае растворения двух,веществ, одно из которых полярно, а другое неполярно, имеет место взаимодействие индуцированных диполей в неполярных молекулах и постоянных диполей молекул растворителя. Под действием электростатического поля полярных молекул происходит изменение электронной структуры молекул неполярного вещества. При этом центр тяжести отрицательно заряженных частиц смещается по отношению к ядру на расстояние I, что проводит к возникновению индуцированного двпольного момента tи в молекулах неполярного вещества (рис. 1). Затем происходит ориентация полярных молекул и молекул, в которых индуцирован диполыный момент. Чем больше этот момент, тем сильнее взаимодействие молекул. Индукционные силы взаимодействия зависят от силы электростатического поля полярной молекулы, т. е. от значения [c.43]

    Рассмотрим, например, электронную структуру молекулы азотной кислоты HNOз. В этой молекуле атом водорода связан с атомом кислорода ковалентной связью  [c.139]

    Гюра валентных схем означает только, что каждая нз этих схем в отдельности ие соотнстстнует истинной электронной структуре молекулы. [c.141]

    В диазометане (H2 NN) один атом азота присоединен непосредственно к атому углерода, а второй атом азота присоединен к первому. Запишите для этой молекулы льюисовы структуры при условии, что а) два атома N соединены между собой тройной связью, б) второй атом N образует две двойные связи с С и N. В правильно составленной льюисовой структуре каждый из атомов С и N должен иметь в своей валентной оболочке по восемь электронов. Каковы формальные заряды на атомах в каждой из двух структур  [c.506]

    Опишите электронную структуру гидразина, N2H4, в рамках модели локализованных орбиталей. Является ли молекула N2H4, плоской Двойная или простая связь соединяет два атома азота в этой молекуле  [c.598]

    Теперь, ознакомившись с.основными характеристи ками электронной структуры двухатомных молекул, мы можем перейти к качественному рассмотрению их МО. Начнем с простейших гомоядерныА систем Н Нг, Нег+ и Нег-  [c.199]

    Более того, квантовомеханические расчеты электронной структуры молекулы метана показали, нто тетраэдрическая конфигурация этой молекулы отвечает наибольшей, по сравнению со всёми другими возможными для нее конфигурациями, электронной энергии. И только благодаря тому, что этой конфигурации соответствует минимум энергии отталкивания ядер, в результате чего полная энергия молекулы (равная сумме ее электронной и ядерной энергий) оказывается все же минимальной, связи С—Н в метане направлены в углы тетраэдра. Таким образом, геометрия молекулы не обусловлена данным типом гибридизации. Последняя лишь устанавливает соответствие между взаимным расположением ядер и пространственным распределением электронной плотности. Но это не единственная, и даже не главная в современной теории строения молекул, функция концепции гибридизации. [c.209]

    Существует еще один эффект, который оказывает влияние на электронную структуру комплекса и который мы должны рассмотреть перед тем, как перейти к обсуждению электронных спектров. Рассмотрим молекулу с неспаренным электроном, находящимся на дважды зырожденной орбиталг. например октаэдрический комплекс Си(П). Вспомните, что в резултгате искажения геометрии молекулы от наиболее симметричной (О,,) до, например, можно понизить энергию молекулы. [c.86]


Смотреть страницы где упоминается термин Молекула электронные структуры: [c.176]    [c.1858]    [c.57]    [c.158]    [c.176]    [c.58]    [c.394]    [c.531]    [c.414]    [c.443]    [c.200]    [c.61]    [c.32]   
Теоретическая неорганическая химия Издание 3 (1976) -- [ c.199 , c.200 , c.201 ]




ПОИСК





Смотрите так же термины и статьи:

Ацетилен электронная структура молекул

Взаимосвязь электронных спектров и структуры органических молекул Хромофоры и ауксохромы

Влияние структуры кристалла на работу выхода, степень покрытия адсорбированными молекулами и электронное взаимодействие

Галоидные соединения тяжелых элементов, электронное строение и структура молекул

Квантовохимические расчеты энергии и электронной структуры молекул

Квантовохимический подход к прогнозированию активности гетерогенных катализаторов. Методы расчета электронной структуры молекул и твердых тел

Метод молекулярных орбиталей и его применение в теории электронной структуры двухатомных молекул

Насыщенные соединения Современное состояние теории электронной структуры молекул Парр)

Реакционная способность молекул н их электронная структура

Структура осколочных отрицательных ионов при диссоциативном захвате электронов молекулами

Структуры молекул в возбужденных электронных состояниях

Тонкая структура компонент чи- 10. Строение и симметрия молекулы в сто электронного перехода. . 73 кристалле

Травень Электронная структура и свойства органических молекул

ЭЛЕКТРОННАЯ СТРУКТУРА ПРОСТЫХ МОЛЕКУЛ ДВУХАТОМНЫЕ МОЛЕКУЛЫ

ЭЛЕКТРОННАЯ СТРУКТУРА ПРОСТЫХ МОЛЕКУЛ МНОГОАТОМНЫЕ МОЛЕКУЛЫ

Электронная структура молекул с дефицитом электронов

Электронная структура некоторых молекул

Электронно-дефицитные молекулы Структура диборана и образование связей

Электронное строение органических молекул в терминах структур Льюиса

Электронные спектры и структура молекул

Электронные структуры молекул и промежуточных соединений

Электронные структуры некоторых молекул по методу МО и их свойства

Этилен электронная структура молекулы



© 2025 chem21.info Реклама на сайте