Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вращательная структура спектров двухатомных молекул

    Анализ колебательной и вращательной структуры электронных спектров с целью определения силовых постоянных, а также расстояний между атомами в состоянии электронного возбуждения и т. д. можно провести только для двухатомных молекул газов. При сравнении интенсивностей недостаточно знать поглощение в максимуме вследствие различной ширины и формы полос необходимо учитывать всю площадь полосы. Интенсивность полосы есть мера вероятности электронных переходов и пропорциональна квадрату момента перехода. Момент перехода характеризует изменение распределения зарядов, происходящее при электронном возбуждении. [c.424]


    На рис. 104 приведена схема уровней энергии двухатомной молекулы. При возбуждении молекулы электроны переходят с одного уровня на другой. Одновременно изменяется и система возможных колебательных и вращательных уровней. Это усложняет спектр и образует ту характерную структуру полосатых спектров, которая резко отличает молекулярные спектры от линейчатых спектров атомов. [c.174]

    Вращательная структура спектров двухатомных молекул [c.27]

    Зоа. Вращательная структура. Спектры многоатомных молекул, имеющие наиболее важное значение, расположены в близкой инфракрасной области. Как было упомянуто выще, электронные спектры слишком сложны для практического использования, а чисто вращательные спектры в далекой инфракрасной области могут быть лишь ограниченно использованы вследствие экспериментальных трудностей, связанных с их изучением. Так же как и в случае двухатомных молекул, изменения вращательного [c.270]

    В 4 упоминалось, что в видимой и ультрафиолетовой областях спектра двухатомных молекул наблюдается большое число полос со сложной структурой. Эти полосы интерпретируются как электронно-колебательно-вращательный спектр. [c.202]

    Этот вопрос наиболее просто решается в случае сплошных спектров поглощения газов в этом случае отсутствие вращательно-колебательной структуры служит признаком неустойчивости возбужденного состояния молекулы, т. е. признаком того, что поглощение света ведет к немедленной диссоциации молекулы. Рассмотрим вопрос о происхождении и особенностях сплошных спектров поглощения на примере спектров двухатомных молекул. [c.306]

    Иногда при исследовании УФ и видимых электронных спектров для их регистрации используют специальные фотопластинки или фотопленки с соответствующей спектральной чувствительностью. Фотографический способ регистрации спектров оставляет за собой право на существование, позволяя получать достаточно высокое разрешение и обеспечивая высокую точность определения длин волн (частот), например, полос колебательной, а для легких, в частности, двухатомных молекул и линий вращательной структуры спектров. [c.337]

    Несмотря на то, что исследование электронных спектров двухатомных молекул проводится уже давно, накопление экспериментальных данных идет относительно медленными темпами. Это можно объяснить тем, что получение достаточно полной и точной информации о двухатомной молекуле возможно только на основе исследования вращательной структуры электронного спектра. Для этого необходимо применение спектральных приборов большой разрешающей силы, которые являются мало светосильными приборами, что, в свою очередь, предъявляет особые требования к источнику излучения. Кроме того, анализ вращательной структуры, вследствие сложного ее характера, весьма трудоемкое дело. Однако именно проведение анализа вращательной структуры [c.142]


    Для вращательного квантового числа / действует правило отбора А/ = 1. Однако в спектре двухатомной молекулы, состоящей из одинаковых ядер, спины которых равны нулю, количество линий в ротационной структуре вдвое меньше, чем это должно быть по элементарной теории линии выпадают через одну. Это связано с существованием правила запрета, согласно которому не наблюдаются переходы между симметричными и антисимметричными состояниями молекулы Р ]. Если спины ядер отличны от нуля, то вместо исчезновения линии наблюдается изменение их интенсивностей. Отношение интенсивностей соседних [c.589]

    Гак же как и для двухатомных молекул, каждая электронно-колебательная полоса имеет тонкую вращательную структуру, возникающую при переходах между отдельными вращательными подуровнями верхнего и нижнего электронно-колебательных уровней. Для простейших молекул колебательная и вращательная структуры разрешены и полностью интерпретированы. Из колебательновращательной структуры спектров многоатомных молекул могут быть определены энергия возбуждения верхнего электронного состояния, колебательные и вращательные постоянные и геометрическая конфигурация молекулы в основном и возбужденном электронных состояниях. В табл. 52 для иллюстрации приведены некоторые данные, полученные при исследовании электронно-колебательно-вращательных спектров простых молекул. [c.435]

    У многоатомных молекул и радикалов обрыв вращательной структуры в спектре испускания из-за предиссоциации наблюдался только в одном случае — у радикала HNO. Хотя обрыв структуры и был обнаружен у двух колебательных уровней (ООО и 010) возбужденного электронного состояния [19], невозможно сделать вывод о том, что граница предиссоциации позволяет определить диссоциационный предел, так как разность энергий предиссоциированных уровней довольно велика (/ 300 см" ) и имеет другой знак по сравнению с обычно наблюдаемым для двухатомных молекул (рис. 106). Однако нижний предиссоциированный уровень дает точную верхнюю границу для одной из энергий диссоциации радикала HNO Dq"< 2,11 эВ. [c.189]

    Теория двухатомных молекул показывает, что при отсутствии моментов у ядер часть вращательных состояний не осуществляется, в результате чего во вращательной структуре полосы должна выпадать каждая вторая линия. Это, действительно, наблюдается в ряде спектров, например в спектрах двухатомных молекул Не — Не , О —О , и служит доказательством отсутствия у них ядерных моментов. [c.578]

    Как видно, изучение спектров двухатомных молекул является важным подспорьем при определении свойств ядер. Во-первых, существенной является возможность получить верный критерий того, равен ли момент / данного ядра нулю или нет выпадение каждой второй линии во вращательной структуре молекулярной полосы с несомненностью указывает на равенство нулю ядерного момента /. Изучение линий атомного спектра такого критерия не дает. Отсутствие сверхтонкой структуры линий еще не является гарантией того, что для ядра исследуемого атома / = Ширина расщепления зависит от величины магнитного момента ядра и при малом его значении структура может оказаться за пределами разрешающей способности применяемой аппаратуры. Наконец, изучение сверхтонкой структуры атомных линий не дает сведений о том, какой статистике подчиняются ядра чередование же интенсивностей вращательных линий в полосах двухатомных молекул позволяет решить и этот вопрос. [c.579]

    Таким образом, колебательный спектр реальной двухатомной молекулы представляет собой серию полос, структура которых определяется изменением вращательной энергии. Из колебательных спектров определяется частота колебания молекулы и в принципе может быть определена энергия диссоциации, поскольку от ее величины зависят постоянная ангармоничности и уменьшение АЕ с п. Однако точность такого определения невелика. Энергия диссоциации определяется из электронных спектров молекул. Электронные спектры отражают одновременное изменение всех видов энергии молекул (электронной, колебательной и вращательной). Этот спектр дают все молекулы независимо от наличия дипольного момента. [c.527]

    Помимо электронных уровней энергии, молекулы обладают также энергетическими уровнями, соответствующими их колебательному, вращательному и поступательному движению. Энергия поступательного движения молекул рассматривалась в гл. 9 при изложении представлений молекуляр-но-кинетической теории. При изучении энергий связи основной интерес представляет колебательная энергия молекул. Можно представить себе, что двухатомная молекула, например Н,- состоит из двух масс, связанных между собой чем-то вроде пружины. Такая молекула вовсе не является жесткой структурой и скорее напоминает пару шариков, соединенных пружиной, причем вся эта система непрерывно колеблется. Колебания происходят с частотами, приходящимися на область инфракрасного излучения, и именно в этой области спектра молекулы способны поглощать энергию излучения. Например, для молекулы H I по данным об энер- [c.312]


    Гомоядерные двухатомные молекулы не имеют постоянных дипольных моментов и не дают чисто вращательных спектров, однако для них наблюдаются вращательные спектры комбинационного рассеяния (разд. 15.10) и в их электронных спектрах имеется тонкая вращательная структура. [c.462]

    Все молекулы имеют электронные спектры, так как переход от одной электронной структуры к другой всегда обусловлен взаимодействием с электромагнитным излучением. В электронных спектрах гомоядерных двухатомных молекул, не имеющих вращательных или колебательно-вращательных спектров, проявляются вращательная и колебательная структуры. [c.469]

    В монографии рассмотрены энергетические состояния двухатомных и простейших многоатомных (главным образом трехатомных) молекул, а также переходы между ними. Классификация состояний и вывод правил отбора для переходов проведены на основе теории групп, необходимые сведения о которой также включены в книгу. Изложены методы анализа колебательной и вращательной структуры электронных спектров, в том числе использование изотопного замещения для этих целей. Показано, как из экспериментальных спектров могут быть определены молекулярные постоянные, углы между связями и др. [c.320]

    Каждый электронный переход вызывает изменение к леба1ель-ного и соответственно вращательного состояния. Хотя гомоядерные двухатомные молекулы не дают чисто колебательных и чисто вращательных спектров, в электронном спектре проявляется вращательная и колебательная структура в виде серий полос, отвечающих электронным переходам. Чем больше поглощенная энергия, тем более сближаются полосы. Возбуждение электронов приводит к возбуждению колебательных состояний и далее к диссоциации молекулы на невозбуждениый и возбужденный атом. Если сообщенная молекуле энергия превышает энергию, необходимую для этого процесса, то избыток ее идет на увеличение кинетической энергии атомов. Спектр поглощения газообразных атомов является непрерывным, поэтому у границы сходимости полос возникает область сплошного поглощения (континуум). Волновое число этой границы гр (также Умакс) определяет энергию перехода от невозбужденной молекулы к атомам, один из которых возбужден. Вычтя из этой энергии энергию электронного возбуждения атома Дбат, получим энергию диссоциации молекулы на невозбужденные атомы Во (рис. XXIX. 5). [c.346]

    Электронные переходы в двухатомных молекулах. Часть спектра, находящегося в видимой и ультрафиолетовой области, не может быть объяснена наличием вращательного или вращательно-колебательного движения. Структура спектра здесь является более сложной и объясняется наличием электронных переходов. [c.75]

    Выбор возможных объектов исследования в этом случае сильно ограничен, так как разрешаемая вращательная структура наблюдается лишь в электронных спектрах паров двухатомных и простейших многоатомных молекул. [c.238]

    Сильное коротковолновое излучение водородных пламен впервые обнаружил Стокс еще, в 1852 г., а полосатый ультрафиолетовый спектр сфотографировали независимо друг от друга в- 1880 г. Лайви нг и Дюар, а также Югинс (1924 г.). Детальный анализ вращательной структуры полос, выполненный Уатсоном (1924 г.) и Джеком (1928 г.), показал, что полосы соответствуют электронному переходу в двухатомной молекуле с небольшим моментом инерции. Единственно возможной частицей, ответственной за это излучение, является гидроксильный радикал ОН. Бонгоффер обнаружил радикал 0Н при введении атомного водорода в кислород (1926 г.) и в парах воды, нагретых до 1000—1600°С (1928 г.). Полный анализ спектра радикала 0Н был проведен в 1948 г. Дике и Кроосуайтом, которые дали классификацию всех полос и ветвей и определили длины волн и интенсивности вращательных линий радикала 0Н, наблюдаемых в спектре водород-кислород-ного пламени в области от 281,1 до 354,6 нм. Позднее получили запись спектра радикала 0Н в области 260—352 м [37]. Полосы ОН могут быть легко получены в спектре поглощения. После того как Кондратьевым и Зискиным в 1936 г. был разработан чувствительный спектроскопический метод линейчатого поглощения, стало возможным экспериментальное определение концентрации гидроксильного радикала в пламени. Гидроксильный радикал был обнаружен в пламени водорода также масс-спектроскопическим методом [38] и методом ЭПР [39]. [c.123]

    В спектрах газов заметной тонкой структуры. Тонкая структура обусловлена комбинациями колебательных и вращательных переходов. Так, например, у двухатомной молекулы могут происходить не только переходы, соответствующие лишь колебатель ному движению vo, но и переходы V0 Vr, где Vr означает вращательную частоту. Поскольку в любом конечном образце содержится очень большое число молекул и, следовательно, имеются многочисленные вращательные состояния, в спектре может появиться целый набор линий с различными значениями Vr (т. е. переходы между различными вращательными состояниями). Это [c.244]

    Полное перечисление этих полос дано в Приложениях, а сама система приведена на фотографии 1, в. Природа носителя спектра полос Свана в течение долгого времени оставалась невыясненной, их появление приписывали излучению углерода или различных соединений углерода с кислородом или водородом. Изучение вращательной структуры полос, вскрывшее чередование интенсивностей отдельных линий, которое характерно для молекул с одинаковыми ядрами, и экспериментальные работы Прет-ти [230] доказали, что носителем этого спектра является двухатомный углерод Сз. [c.66]

    В некоторых сл) чаях, начиная с волны определенной длины (иногда внезапно, а иногда — постепенно), исчезает вращательная структура полос. Полосы существуют, но имеют диффузный характер. Такие диффузные полосы иногда прослеживаются вплоть до области сплошного поглощения в ультрафиолетовой части спектра. Иногда вращательная структура полос при приближении к области сплошного поглощения вновь восстанавливается. Если освещать молекулы светом с длинами волн, соответствующими диффузным участкам полос, то можно обнарул ить продукты диссоциации исследуемого вещества. Первоначально предполагали, что появлению диффузных полос соответствует переход молекул в особое активное состояние, предшествующее диссоциации, которое было названо предиссоциацией. В .действительности же, как показывают опыт и теория, появление диффузных полос связано с распадом молекулы. Несмотря на это, термин предиссоциация сохранился, так как механизм диссоциации молекул, как будет показано ниже, несколько отличается от рассмотренного нами ранее механизма фотохимической диссоциации, связанной с появлением сплошной области поглощения в коротковолновой части спектра. Явление предиссоциации наблюдается не только у двухатомных молекул, таких, как Зг, Р2, но чаще всего у многоатомных молекул, например аммиака, ацетальдегида, бензола, пиридина, нафталина. Так, для ацетальдегида в интервале от 3484 до 3050 А полосы становятся диффузными, вращательная структура исчезает, хотя еще удается проследить около шестидесяти полос. При освещении ацетальдегида светом с длинами волн к > 3050 А никакого разложения ацетальдегида не происходит, но при освещении светом с длинами волн К < 3050 А обнаруживаются продукты диссоциации ацетальдегида — метан и окись углерода. [c.63]

    Как видно из формул (IX. 120)—(IX. 124), для расчета термодинамических функций идеального двухатомного газа при заданных ТиУ необходимо знать следующие молекулярные характеристики молекулярный вес газа М, момент инерции молекулы I, число симметрии молекулы о, частоту колебаний V, вырождение основного электронного уровня рд. Вообще говоря, требуются также сведения о первых возбужденных электронных состояниях. Если энергия возбуждения велика, обоснованно пренебречь ими, если нет — возбужденные состояния необходимо учесть при расчете Q . Спиновые характеристики ядер и аг при расчете практических термодинамических функций не учитываются. Источником сведений об энергиях электронных состояний являются электронные спектры молекул. Идентификация спектрально найденных уровней, определение их вырождения непосредственно связаны с квантовомеханическим рассмотрением. Частота колебаний определяется из данных об инфракрасных спектрах и спектрах комбинационного рассеяния. Изучение вращательной структуры спектров позволяет оценить момент инерции молекулы. Основой для определения момента инерции могут служить также данные радиоспектроскопических измерений. Если междуядерное расстояние г в молекуле известно (например, из электронографических измерений), момент инерции можем рассчитать по формуле I = цг , где = гпут Цт + тг). [c.256]

    Для электрического ди-польного перехода, в котором электрический вектор излучения параллелен магнитному нолю, правило отбора ДМ,/ = О (в дополнение к обычным вращательным правилам отбора). Для перпендикулярной ориентации ДЛfJ = + 1. В случае параллельной ориентации получается очень простое выражение [9] для величины магнитного поля, при которой наблюдается резонанс, == = аМ5Я 2 -ь ЪМ Н + с, где константы а, Ъ, с — зависят от от спин-вращательных констант двух уровней и от разности энергий излучения лазера и вращательного перехода в пулевом магнитном поле. Соответствующее выражение для перпендикулярной ориентации имеет схожий вид, но включает дополнительные члены с MJH и Я. Таким образом, спектры лазерного магнитного резонанса имеют ветви, соответствующие ДЛ// = О, + 1 и они имеют параболическую форму, во многом схожую с вращательной структурой электронных спектров двухатомных молекул. Эти ветви могут быть легко выделены в спектрах NH2иPH2 на рис. Зи4, которым соответствуют диаграммы энергетических уровней [6, 7], приведенные на рис. 2 и 5. Можно видеть, что идентификация индивидуальных ветвей не является сложной проблемой. Относительная простота формул для интенсивностей индивидуальных линий также помогает установлению величины MJ внутри ветви. [c.32]

    Полосы на спектрах, расположенные в диапазоне видимого и ультрафиолетового излучения, возникают в результате взаимодействия вращательных, колебательных и электронных переходов и имеют сложную структуру. На рис. А.23 и А.24 приведена упрощенная схема термов двухатомной молекулы. На рис. А.23 дана схема основного состояния с колебательными и вращательными уровнями энергии. Диссоциированная молекула, атомы которой могут принимать любое количество кинетической энергии, соответствует заштрихованным областям (рис. А.23 и А.24). Вращательные термы приведены в другом, значительно меньшем масштабе. На рис. А.24 показаны аналогичные термы электронных переходов возбужденной молекулы. Полоса электронных переходов состоит из ряда полос, соответствующих различным колебательным переходам, а те в свою очередь имеют тонкую структуру, связанную с вращением молекул. Энергию диссоциации молекулы можно определить, установив частоту, при которой полосатый спектр переходит в сплошной, однако при этом следует учитывать энергию возбуждения образовавшихся атомов. Положение колебательных уровней при электронных переходах в молекуле определяется принципом Франка — Кондона при электронных переходах расстоя- [c.66]

    Колебательно-вращательные спектры линейных многоатомных радикалов очень похожи, конечно, на спектры стабильных линейных молекул (см. [II], гл. IV), если их основные электронные состояния относятся к типу Е. В этом случае вращательная структура колебательных переходов Ей—Е и Пц—Е для симметричных молекул должна быть в инфракрасной области совершенно такой же, как у электронных полосЕ — Е иП — Е двухатомных радикалов. Для симметричных линейных молекул типа ХУг только колебания va и V3 активны в инфракрасной области (рис. 53). Для несимметричных молекул все колебания активны в инфракрасной области (индексы g тя. и должны быть опущены). У радикалов такие спектры в газовой фазе еще не найдены, однако в твердой матрице при очень низкой температуре фундаментальные частоты в инфракрасной области были получены для ряда свободных радикалов, особенно Миллиганом и Джекоксом. Естественно, при этих условиях вращательная структура не наблюдается.- [c.99]

    В спектрах этих пламен наблюдаются три системы полос СН, начинающиеся примерно при одной длине волны. Системы полос имеют разрешенную вращательную структуру, характерную для спектров двухатомных гидридов, и дуплетные ветви, показывающие, что молекула- излучатель имеет нечетное число электронов. Поскольку аналогичные полосы легко получить в условиях разряда в парах чистых углеводородов, излучателем полос может быть только радикал СН. [c.128]

    РЬО. Молекула окиси свинца, так же как двухатомные молекулы окиси углерода и кремния, имеет основное состояние 2. До настоящего времени в спектрах испускания и поглощения РЬО наблюдались пять систем полос,расположенных от 2600 до 6000 А и связанных с переходами между основным и пятью возбужденными состояниями. Хотя полосы всех этих систем имеют простой вид, перекрывание полос и наложение спектров трех изотопных модификаций РЬО затрудняют анализ их вращательной структуры и определение типов верхних состояний соответствующих переходов. Единственным исследованием тонкой структуры полос РЬО является работа Кристи и Блюменталя [1104], которые выполнили анализ структуры трех полос (О—2, О—3 и О—5) системы Л и одной полосы (О—2) системы D Х- 2, полученных в испускании на приборе с дисперсией около 1,ЗА/мм. Вращательная структура полос состояла из одиночных линий Р-и/ -ветвей, в связи с чем авторы работы [1104] пришли к выводу, что обе системы полос связаны с переходом между синглетными состояниями, имеющими одинаковое значение Л, т. е. с переходами 2 — 2. Наосновании полученных данных авторами работы [1104] были найдены значения вращательных постоянных РЬО в состоянии Х 2 и постоянной Ва — в состояниях Л 2 и D4j. [c.925]

    Для этого необходимо, чтобы давление паров было близко к атмосферному. Микроволновые спектры можно наблюдать для молекул, дипольный момент которых составлял не менее 0,1 дебая (1 дебай равен 3,33-10 ° Кл-м). Для двухатомной молекулы вращательный спектр дает возможность определить момент инерции, поскольку возможные энергетические уровни ( вращ) двухатомной жесткой вращающейся структуры описываются формулой  [c.163]

    Энергетический спектр молекул. Для двухатомных молекул, кроме электронных энергетических переходов, возможны два рода движения, которые не имеют места для атомов, и эти два рода движения надо рассматривать как возможную причину возникновения спектров совершенно другого типа по сравнению с атомными спектрами. Во-первых, молекула может вращаться как целое вокруг оси, проходящей через центр тяжести и перпендикулярной к прямой, соединяющей ядра (меж-дуядерная ось), и, во-вторых, атомы могут колебаться один относительно другого. Вращательные и колебательные процессы непосредственно связаны с внутренним строением молекул. В колебаниях ярко отражаются как геометрическая структура молекулы, так и взаимодействия атомов, образующих молекулу. Колебания играют существенную роль во всех многообразных свойствах молекул изучение колебаний дает ключ к решению важных вопросов строения вещества. [c.71]

    Спектры трех многоатомных ионов наблюдались в свечении газовых разрядов. Если разряд происходит в двуокиси углерода, то, кроме хорошо известных полос двухатомных молекул, в области от 2800 до 5000 Л появляется большое число новых полос. Эти полосы наблюдались многими исследователями [88], и сейчас известно, что они относятся к 0 иону. Анализ вращательной структуры интенсивного XX 2883—2896 дублета был проведен Буезо-Санллехи [9], а исчерпывающий анализ многих других полос в спектре— Мрозовским [88—911. Эти анализы обсуждаются подробно в разделе И1,Б. В ультрафиолетовой области спектра Лэрд и Барроу [74] наблюдали систему полос в свечении [c.16]

    Два других случая заслуживают особого внимания. Основное электронное состояние молекулы кислорода 2 " и взаимодействие между электронным спином молекулы и полным вращательным моментом приводит к расщепленида вращательных уровней на триплеты [121]. Поэтому в чисто вращательном спектре КР проявляется усложненная тонкая структура, которая не учитывалась в ранних исследованиях [29, 80]. Эта тонкая структура частично разрешается, и распределение ее интенсивности хорошо согласуется с предсказаниями теории [104, 110а]. В отличие от других стабильных двухатомных молекул молекула окиси азота N0 и.меет в основно.м электронном состоянии орбитальный электронный момент количества движения / = 1. Взаимодействие между электронным моментом количества движения и полным вращательным моментом молекулы приводит к расщеплению основного электронного состояния на состояния и [c.224]

    Оценка расстояний между максимумами Р-, Р-, -структуры колебательно-вращательных полос поглощения многоатомных молекул, хотя и более сложна и приближенна, чем у двухатомных молекул, также. может быть полезной. Следует заметить, что до сих пор данные о контурах вращательной структуры колебательно-вращательных полос получали в основном из ИК спектров. Однако иснользование мощных лазеров для возбуждения спектров КР облегчает получение аналогичных данных о колебательно-вращатель-ных полосах в спектрах газов и методом КР света. Особенности вращательной структуры в колебательных спектрах КР не рассматриваются, так как ее изучение методом спектроскопии КР пока еще проводилось мало. [c.219]

    Структура спектра комбинационного рассеяния часто оказывается довольно сложной даже для двухатомных молекул. В особом случае двухатомных молекул, у которых угловой момент количества движения электроиа относительно межъядер-ной оси равен нулю (Л = 0), правила отбора [127] разрешают колебательно-вращательные переходы с изменением вращатель- [c.354]

    Явление предиссоциации наблюдается у двухатомных молекул, как 2, 2, но чаще всего у многоатомных молекул аммиака, ацетальдегида, бензола, пиридина, нафталила и др. Так, в спектре ацетальдегида от Я = 348,4 нм до Я = 305,0 нм полосы имеют отчетливую вращательную (ротационную) структуру. При % = 305,0 нм полосы становятся диффузными, вращательная структура исчезает, хотя еще удается проследить около шестидесяти полос. При освещении ацетальдегида светом с длиной волны X > 305,0 нм он не разлагается, но при освещении [c.98]

    Подавляющее число спектров испускания связано с излучением двухатомных молекул. Однако известно небольшое количество систем, которые являются результатом излучения трехатомных и многоатомных молекул. В ряде случаев такие системы наблюдались в спектрах поглощения. Оказывается, что большинство возбужденных электронных состояний многоатомных молекул неустойчиво, и поэтому спектры, соответствующие переходам с участием такого рода состояний, не могут быть обнаружены в излучении, в поглощении же наблюдаются только сплошные спектры. В тех же случаях, когда можно наблюдать спектры мн()гоатомных молекул, картина очень сложна и хотя некоторые из этих спектров, как, например, спектры lOj и бензола, имеют довольно правильный характер и могут быть, во всяком случае частично, проанализированы, в общем случае анализ неосуществим. За исключением спектров небольшого числа линейных молекул, которые могут быть рассмотрены теоретически таким же образом как и двухатомные, об электронной и вращательной структуре таких спектров известно очень мало. Анализ колебаний усложняется большим числом частот колебаний трехатомная молекула обладает тремя колебательными степенями свободы, а молекула из N атомов имеет 3iV — 6 степеней правда, число различных частот будет меньше этого числа, если молекула обладает большой степенью симметрии. Попытки вывести правила для определения изменения колебательного квантового числа при электронных переходах были сделаны Герцбергом и Теллером [143] и Ку [180], которые нашли, что разрешенными являются только некоторые из возможных полос. Однако их выводы расходятся с результатами исследования спектра поглощения SO2, и развитие теории может быть, вероятно, осуществлено только после дальнейшей экспериментальной работы. [c.37]


Смотреть страницы где упоминается термин Вращательная структура спектров двухатомных молекул: [c.53]    [c.88]    [c.67]    [c.487]    [c.91]    [c.9]    [c.240]   
Смотреть главы в:

Спектроскопия и теория горения -> Вращательная структура спектров двухатомных молекул




ПОИСК





Смотрите так же термины и статьи:

Вращательные спектры двухатомных молекул

Двухатомные молекулы

Спектры вращательные

Спектры молекул



© 2024 chem21.info Реклама на сайте