Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сложные эфиры как алкилирующие агенты

    Г. не обладают хим. св-вами восстанавливающих сахаров, обусловленными карбонильной группой, не подвержены мута-ротации. Они легко ацилируются ангидридами и галогенангидридами к-т в пиридине с образованием сложных эфиров, алкилируются типичными алкилирующими агентами в сильнощелочных средах, образуют циклич. ацетали и кетали при конденсации с карбонильными соед., окисляются периодатами с расщеплением связей С—С, подвергаются кислотному гидролизу, алкоголизу, формолизу с расщеплением гликозидной связи. Скорость гидролиза в наиб, степени зависит от размера цикла фуранозиды гидролизуются на два порядка быстрее пиранозидов. Механизм гидролиза м. б. представлен след, схемой (знак означает, что молекула Г. может иметь ас- или р-конфигура-цию)  [c.576]


    Перенос водорода становится значительной, если не преобладающей реакцией при применении в качестве алкилирующего агента вместо олефина соответствующего ему сложного эфира. Это происходит благодаря наличию высокой концентрации ионов карбония, которые принимают участие в (обычно) необратимой первой ступени цепной реакции, сопро- [c.314]

    Алкилирующими агентами являются олефины, ацетилен, хлор-производные углеводородов, спирты, сложные эфиры, окись этилена. Катализаторы алкилирования серная, фосфорная, соляная и фтористоводородная кислоты, хлориды алюминия и железа и др. [c.38]

    Некоторые сложные эфиры, не получающиеся при прямой этерификации сульфокислот, сами являются алкилирующими агентами (разд. 10.1)  [c.94]

    Важнейшими СН-кислотами, используемыми в реакциях алкилирования, являются кетоны (рК к 19-20), сложные эфиры (рК х 24) и 1,3-дикарбонильные соединения (рК к 9-13). Вначале получают еноляты металлов, которые затем реагируют [2] с галогеналканами или алкилсульфонатами по механизму нуклеофильного замещения с образованием С—С-связи. В качестве алкилирующих агентов могут быть использованы также сульфоны [3] (рК 23) (Р-6г), изонитрилы [4] Р-156, Р-16 и ацетилены [5] (рХ 25) А-9, К-32а, К-32в. Для получения карбанионов (отщепление протона) в зависимости от значения рК (кислотности) этих СН-кислот используют основания различной силы. [c.193]

    Согласно патентной литературе, родамины превращаются при действии алкилирующих агентов в сложные эфиры солей ксантилия. Ацетилирование родамина уксусным ангидридом и серной кислотой дает бесцветное диацетильное производное [82]. [c.400]

    Л. обладают многими свойствами сложных эфиров, но, как правило, реакционноспособнее последних. Реакции Л. сопровождаются раскрытием цикла. При нагревании в воде, а также в р-рах к-т или щелочей Л. гидролизуются в соответствующие оксикислоты со спиртами образуют эфиры оксикислот, с аминами — амиды, с гидразинами — гидразиды оксикислот, т. е. во всех этих реакциях Л. служат ацилирующими агентами. С ароматич. углеводородами в присутствии к-т Льюиса Л. взаимодействуют как алкилирующие агенты  [c.19]

    Реакции по алкил-кислородной связи и прямой синтез эфиров из олефинов. Кроме рассмотренных выше реакций по ацил-кис-лородной связи, типичных для этерификации и превращений сложных эфиров, возможны процессы, идущие с образованием или разрывом алкил-кислородных связей. Они нередко протекают с промежуточным образованием карбокатионов, и им способствует такое строение спиртовой и кислотной компоненты, которое благоприятствует поляризации алкил-кислородной связи или стабилизации карбокатиона. Именно по этой причине некоторые сложные эфиры, особенно эфиры серной и арилсульфокислот, являются известными алкилирующими агентами [c.198]


    Вследствие стабильности сульфонатного аниона он легко замещается в сульфонатных сложных эфирах, которые являются алкилирующими агентами, похожими на алкилгалогениды (гл. 6). [c.201]

    Сложные эфиры серной кислоты и арилсульфокислот. Как указывалось в предыдущей главе, их реакции нередко протекают с разрывом алкил-кислородной связи, что и обусловливает алкилирующее действие сложных эфиров. В промышленности основного-органического и нефтехимического синтеза указанные соединения в качестве алкилирующих агентов не применяются, но эфиры серной кислоты могут быть промежуточными продуктами при сернокислотном катализе реакций алкилирования. [c.341]

    Помимо побочных реакций, протекающих с участием алкилирующего агента, могут иметь место многочисленные изменения как первоначального активного. метиленового соединения, так и продукта реакции. Выще было уже упомянуто о возможности реакции обмена в том случае, когда алкокси-группа в сложном эфире отличается от иона алкоголята (стр. 133). Если для алкилирования сложных эфиров в качестве основания применяется амид натрия, то серьезное значение приобретает такая побочная реакция как образование амида [178, 179]. [c.142]

    Реакция образования простых эфиров целлюлозы необратима. Если степень этерификации сложных эфиров можно регулировать изменением состава этерифицирующей омеси (для нитрата целлюлозы) или последующим омылением продукта реакции (ацетат и ацетобутират целлюлозы), то для простых эфиров целлюлозы эти методы регулирования степени замещения не могут быть использованы. Поэтому степень замещения определяется главным образом соотношением алкилирующего агента и целлюлозы, а также степенью активирования целлюлозы набуханием. Следует иметь в виду, что при получении эфиров целлюлозы особенно велика доля побочных реакций, на которые расходуется алкилирую-щий агент. К таким реакциям преимущественно относится омыление алкилгалогенидов, приводящее к образованию соответствующих спиртов и эфиров  [c.416]

    В качестве экстрактанта был использован бисульфат тетрабутиламмония. В том случае, когда К = СНз, образовывались Z- и -изомеры соединения Н, а при R = eH5 был получен только Z-изомер. В случае 2-меркаптокоричной кислоты (О-кис-лота при R = 6Hs) при действии молярного количества алкилирующего агента вначале происходит 5-алкилирование, после чего можно провести еще одно алкилирование — с образованием сложного эфира [907]. [c.145]

    Ацетилен взаимодействует с 2 молями ароматического соединения, давая 1,1-диарилэтаны, а другие алкины, если и реагируют, то плохо. Спирты более реакционноспособны, чем алкилгалогениды, хотя при катализе реакции кислотами Льюиса требуется большее количество катализатора, так как он расходуется на комплексообразование с группой ОН. Для катализа реакций с участием спиртов часто применяют протонные кислоты, особенно серную. При использовании в качестве реагентов сложных эфиров реакция осложняется конкуренцией между алкилированием и ацилированием (реакция 11-15). И хотя в этой конкуренции обычно преобладает алкилирование и вообще ею можно управлять правильным подбором катализатора, сложные эфиры карбоновых кислот редко используются в реакциях Фриделя — Крафтса. Среди других алкилирующих агентов — тиолы, сульфаты, сульфонаты, алкилнитросоединения [199] и даже алканы и циклоалканы в условиях, когда их можно превратить в карбокатионы. Здесь следует отметить и этиленоксид, с помощью которого можно ввести в кольцо группу СН2СН2ОН, и циклопропан. Для реагентов всех типов реакционная способность соответствует следующему ряду аллильный и бензиль-ный тип>третичный>вторичный> первичный. [c.349]

    Все ароматические и гетероциклические соединения, способные к. конденсации с алкилирующими агентами, реагируют также с хлррангид-ридами и ангидридами кислот. Фенолы реагируют с хлорангидридами кислот, образуя сложные эфиры, которые под действием хлористого алюминия претерпевают перегруппировку Фриса, в результате которой получаются оксикетоиы (см. стр. 299). [c.297]

    S ранних работах [2, 3] алкилирование ацетилидов щелочных -металлов проводилось в жидком аммиаке при действии органических галогенидов или сульфатов в качестве алкилирующих агентов. Среди галогенидов бромиды дают наилучшие результаты, однако эта реакция имеет ограничения ввести можно только первичные алкильные группы, не имеющие разветвления у второго атома углерода. Кроме того, при применении алкилгалогенидов этот метод не дает удовлетворительных результатов при синтезе метил- или этил-ацетиленов, а в случае высших алкилгалогенидов необходимо работать под давлением. Если исходить из бромидов от w-пропил-до н-гексилбромида, то выходы колеблются от 40 до 80%. При использовании диметил- или диэтилсульфата в качестве алкилн-рующего агента происходит замещение лишь одной алкильной группы и конверсия достигает от 50 до 100%. Другие сложные эфиры, такие, как метан- и я-толуолсульфонаты, а также, ацетилиды лития и калия тоже использовались, но в ограниченной степени. [c.188]


    Интенсивность реакций перераспределения водорода значительно усиливается и эта реакция становится основной, если в качестве алкилирующего. агента вместо соответствующего олефина применять сложный алкильный эфир. Этого и следовало ожидать на основании предложенного механизма,. так как сложный эфир является источником высокой, концентрации карбоний-ионов,. принимающих участие в (обычно) необратимой первой ступени цепной реакции, давая трет-бутильные ионы, претерпевающие реакцию автоалкилирования вследствие исчерпания ресурсов олефинов для стадии 2. Так, в присутствии хлористого алюминия в качестве катализатора взаимодействие изобутана с хлористым изопропилом при 40—70° приводило к образованию пропана (выход 60—90%), наряду с жидким продуктом, содержавшим несколько больше-октанов, чем гептанов [30]. В присутствии фтористого бора реакция изобутана с фтористым изопропилом при —80° ведет к образованию 2,2,4-триметилпен-тана в качестве основного компонента жидкого продукта на 1 моль фтористого-пропила, восстанавливающегося до пропана, расходуются 2 моля изобутана [10]. В присутствии серной кислоты в качестве катализатора реакция изобутана с тре/тг-амиловьш спиртом при 2° давала изопентан с выходом 50%. Аналогично при взаимодействии изопентана с тре/п-бутиловым спиртом при 27° получался изобутан с выходом 111% [22]. Образование продуктов перераспределения водорода при этих катализируемых серной кислотой реакциях сопровождалось расходованием изопарафинового сырья в количестве, превышающем эквимолярное при взаимодействии около 1,8 молей изобутана и около- [c.185]

    Наиболее широко распространенный метод получения этилового эфира метилмалоновой кислоты состоит в алкилировании малонового эфира иодистым метилом бромистым метилом или ди.ме-тилсульфатол Отделение конечного продукта от следов не изменившегося исходного продукта и от этилового эфира диметилмалоновой кислоты не может быть достигнуто перегонкой, так как точки кипения всех трех сложных эфиров лежат в пределах 3,5°. Михаэль 1 нашел, что не вступивший в реакцию малоновый эфир может быть полностью отделен, если воспользоваться тем, что он легче омыляется щелочью, а Гэн и Ингольд получили чистый продукт путем омыления, перекристаллизации метилмалоновой кислоты и последующей этерификацией. На основании опытов Сальковского мл. с ацетоуксусным эфиром можно сделать заключение, что в случае применения бромистого метила в качестве алкилирующего агента образование диметильного производного не имеет места. Методика Б, основанная на работе Михаэля описана в литературе [c.591]

    Третичные алифатические О. с.-одни из самых сильных алкилирующих агентов, в очень мягких условиях легко алкилируют не только спирты, фенолы, орг. к-ты, амины, сульфиды, но и соед., не алкилирующиеся обычными реагентами (AlkHal, Alk2S04), напр, амиды к-т, сложные эфиры, кетоны, сульфоксиды, тиофен (по атому серы)  [c.365]

    Благодаря наличию в молекуле сопряженной системы связей ЫНС=5 бензазолин-2-тионы образуют в реакциях алкилирования галоидными алкилами, непредельными соединениями, сложными эфирами и т.. п. два ряда производных — по атомам серы и азота [7—10] с преобладанием тех или других в зависимости от алкилирующего агента и условий проведения реакции. Поведение в подобных реакциях ариламиноалкилгалогенидов практически не исследовано. [c.104]

    АМИНОЭФИРЫ, би- или полифуикциональные орг. соединения, в молекулах к-рых одновременно имеются группы ККа (К = И или орг. остаток) и остатки простых илп сложных эфиров. Обладают хим. св-вами аминов и эфиров. Образуют соли с к-тами и комплексные соед. с солями металлов. Многие А. раств. в воде (особенно в виде солей) и в орг. р-рителях. Получ. взаимод. галогенэфиров с аминами или аминоспиртов с алкилирующими (соотв. ацилирующими) агентами. Из производных простых эфиров особое значение имеют макроциклич. А. (криптанды), обладающие комплексообразующими св-вами. Структурные фрагменты аминов и простых эфиров содержатся во мн. алкалоидах, напр, производных морфина. Среди А.— производных сложных эфиров — большое число лек. в-в, напр, новокаин, промедол. [c.41]

    Собственно, реакция Фриделя — Крафтса [45] заключается в алкилировании или ацилировании ароматического кольца в присутствии кислот Льюиса типа хлористого алюминия. Кроме того, эта реакция может быть распространена на алкилирование и ацили-рование алифатических углеводородов, как насыщенных, так и ненасыщенных [46, 47]. Основная реакция часто сопровождается вторичными реакциями типа полимеризации или изомеризации субстрата или алкилирующего агента. Далее реакция осложняется образованием комплекса между реагирующими веществами, катализаторами и продуктами, как уже указывалось в гл. I некоторые из этих комплексов могут образовывать отдельные фазы [48]. Хотя основная схема механизма реакции твердо установлена, количественное рассмотрение кинетических закономерностей наталкивается на трудности, поэтому количественный анализ проведен только для нескольких реакций, осуществленных в благоприятных условиях. К числу используемых катализаторов относятся галоидные соединения бора, алюминия, галлия, железа, циркония, титана, олова, цинка, ниобия и тантала. Все эти соединения являются акцепторами электронов и, по определению Льюиса, общими кислотами. Их функция, по-видимому, состоит в облегчении образования ионов карбония из олефинов, галоидалкилов или спиртов, из хлорангидридов алкил- или арилкарбоновых кислот, ангидридов кислот или сложных эфиров [49]. Ионы карбония легко реагируют с ароматическими углеводородами, и эти реакции открывают важные пути синтеза производных ароматических углеводородов. [c.79]

    Для получения сложных эфиров (пластификаторов) в качестве алкилирующих агентов, наряду со спиртами, были использованы галлоидные производные углеводородов жирного ряда [183, 234, 271—273], производство которых создается в Азербайджанской ССР, и технический диэтилсульфат [183, 236—238, 2751, являющийся полуфабрикатом завода синтетического каучука в Сумгаите. [c.176]

    Получение сложных эфиров из солей. Многие сложные эфиры трудно получить прямой этерификацией, поэтому необходимо применять другие методы. В этих случаях может быть рекомендовано использование солей кислот и алкилирующих агентов типа алкилгалогенидов или алкилсульфатов. Например, п-нитробензилацетат можно получить взаимодействием /г-ннтробензилхлорида и ацетата натрия (СОП, 3, 351 выход 82%)  [c.256]

    Как уже было указано выше (стр. 128), третичные галоидалкилы, которые могут подвергаться дегидрогалогенированию, вступают в эту реакцию с большей скоростью, чем в реакцию замещения, приводящую к алкилированию поэтому третичные галоидалкилы являются плохими алкилирующими агентами [157, 159]. Реакция образования олефинов имеет меньшее значение в случае вторичных галоидалкилов [160] и является второстепенной побочной реакцией в случае первичных галоидалкилов. Такие галоидные соединения, как этиловые эфиры а-бромизомасляной [161 —167] и -бромлевулиновой кислоты [168], при дегидрогалогенировании которых образуется а,,8-не-предельный сложный эфир или кетон, вызывают дальнейшие осложнения первоначально образовавшиеся непредельные со- [c.139]

    Реакции с металлоорганическими соединениями. Эти реакции могут быть двух типов реакции сложных эфиров и реакции солей кислородсодержащих кислот. При получении металлалкилов или металларилов действием алкилирующих агентов, в качестве которых используются реактивы Гриньяра или алкильные производные щелочных металлов, иногда удобнее пользоваться не галогенидами металлов, а алкоксильными производными металлов с низшими алифатическими радикалами, так как последние вследствие растворимости в углеводородах или эфире алкилируются почти так же хорошо, как и галогениды металлов. Эфиры борной кислоты, например триэтокси-бор (С2Н50)зВ, несколько легче получить и очистить, чем галогениды бора они также удобнее в обращении. Это же можно сказать относительно эфиров некоторых других элементов, таких, как кремний или германий. Могут также встретиться случаи, когда при получении смешанных алкилпроизводных метал- [c.74]

    Еще до появления активных красителей было хорошо известно, что целлюлоза в гетерогенной среде способна реагировать как алифатический спирт, образуя простые и сложные эфиры [20—26]. Реакции алкилирования и ацилирования целлюлозы с помощью нерастворимых в воде алкилирующих и ацилирующих агентов проводят в довольно ограниченном числе растворителей, например ацетоне, бензоле, диоксане или системах с низким содержанием воды. Взаимодействие целлюлозы с цианурхлоридом, в результате которого был получен первый активный краситель, подробно описали Халлер и Хаккендорн [27—35], а также и другие авторы [36]. Реакции с активными галогенпроизводными или сернокислыми эфирами проходят в водно-щелочной среде при сравнительно низких температурах, но они могут проходить также и в условиях запаривания или термофиксации сухим теплом [37]. Концентрация щелочи, требующаяся для проведения этих реакций, зависит главным образом от реакционной способности данной активной сн- [c.246]


Смотреть страницы где упоминается термин Сложные эфиры как алкилирующие агенты: [c.325]    [c.197]    [c.203]    [c.209]    [c.45]    [c.1344]    [c.204]    [c.131]    [c.139]    [c.142]    [c.440]    [c.74]    [c.254]    [c.238]    [c.131]    [c.175]    [c.822]   
Химия и технология основного органического и нефтехимического синтеза (1971) -- [ c.341 ]

Теория технологических процессов основного органического и нефтехимического синтеза Издание 2 (1975) -- [ c.298 ]




ПОИСК







© 2025 chem21.info Реклама на сайте