Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водород образование при фотосинтезе

    Минеральными удобрениями называют соли, содержащие элементы, необходимые для питания растений и вносимые в почву для получения высоких и устойчивых урожаев. В состав растений входят около 60 химических элементов. Для образования ткани растения, его роста и развития требуются в первую очередь углерод, кислород и водород, образующие основную часть растительной массы, далее азот, фосфор, калий, магний, сера, кальций и железо. Источниками веществ, необходимых для питания растений, служат воздух и почва. Из воздуха растения извлекают основную массу углерода в виде диоксида углерода, усваиваемого путем фотосинтеза, а из почвы — воду и минеральные вещества. Некоторое количество диоксида углерода воспринимается корневой системой растений из почвы. Среди минеральных веществ особенно важны для жизнедеятельности растений азот, фосфор и калий. Эти элементы способствуют обмену веществ в растительных клетках, росту растений и особенно плодов, повышают содержание ценных веществ (крахмала в картофеле, сахара в све-кле, фруктах и ягодах, белка в зерне), повышают морозостойкость и засухоустойчивость растений, а также их стойкость к заболеваниям. При интенсивном земледелии почва истощается, т. е. в ней резко снижается содержание усваиваемых растениями минеральных веществ, в первую очередь растворимых в воде и почвенных кислотах соединений азота, фосфора и калия. Истощение почвы снижает урожайность и качество сельскохозяйственных культур. Уменьшение содержания питательных веществ в почве необходимо постоянно компенсировать внесением удобрений. Ввиду огромных масштабов потребления минеральные удобрения— наиболее крупнотоннажный вид химической продукции, годовое количество которой составляет десятки миллионов тонн. [c.143]


    После завершения этих реакций наступает темновая стадия процесса фотосинтеза, сущность которой состоит в передаче водорода молекулой восстановленного хлорофилла молекуле СО2 с образованием органических соединений типа углеводов. Этот процесс совершается под действием соответствующих ферментов по схеме [c.178]

    Если сравнить химический состав Земли с составом Вселенной, то, казалось бы, между ними не должно быть существенных различий, за исключением, пожалуй, водорода, который легко уходит из атмосферы в межпланетное пространство. К сожалению, судить о составе Земли можно лишь по составам атмосферы, гидросферы и земной коры, изученной в глубину не более чем на 20 км. Главная химическая особенность этих трех сфер — необычайно высокое содержание кислорода, что объясняется уже не строением ядер его атомов, а его химическими свойствами. Атомы кислорода способны образовывать прочные химические связи с атомами многих элементов, в том числе кремния и алюминия. В процессе образования земной коры эти элементы накапливались в ней благодаря легкоплавкости их соединений со щелочами. В итоге на поверхности нашей планеты выкристаллизовалась твердая кремнекислородная оболочка. Кислород, не считая воды, входит в состав 1364 минералов. В атмосфере кислород появился около 1,8 млрд. лет назад в результате действия на минералы микроорганизмов. В настоящее время выделение кислорода растениями за счет фотосинтеза возмещает его убыль в атмосфере в ходе процессов окисления, горения, гниения, дыхания. По числу известных природных соединении (432) второе место занимает кремний. Далее по распространенности атомов в земной коре следуют алюминий, натрий, железо, кальций, магний и калий  [c.201]

    Как видно из схемы, в световой фазе фотосинтеза избыточная энергия возбужденных е> электронов порождает два процесса фотолиз с образованием молекулярного кислорода и атомарного водорода [c.608]

    Окисление органических веществ. В результате поглощения СО2 и дальнейших его преобразований в ходе фотосинтеза образуется молекула углевода, которая служит углеродным скелетом для построения всех органических соединений в клетке. Органические вещества, возникшие в процессе фотосинтеза, характеризуются высоким запасом внутренней энергии. Но энергия, аккумулированная в конечных продуктах фотосинтеза — углеводах, жирах, белках,— недоступна для непосредственного использования ее в химических реакциях. Перевод этой потенциальной энергии в активную форму осуществляется в процессе дыхания. Дыхание включает механизмы активации атомоп водорода органического субстрата, освобождения и мобилизации энергии в виде АТФ и генерации различных углеродных скелетов. В процессе дыхания углевод, жиры и белки в реакциях биологического окисления и постепенной перестройки органического скелета отдают спои атомы водорода с образованием восстановленных форм. Последние при окислении в дыхательной цепи освобождают энергию, которая аккумулируется в активной форме в сопряженных реакциях синтеза АТФ. Таким образом, фотосинтез и дыхание — это разли ные, но тесно связанные стороны общего энергообмена. [c.609]


    ЧТО все атомы кислорода для образования О2 поставляет вода в соответствии с уравнением (13-246). Эту идею высказал К. Ван-Ниль [79а] в 1933 г. Он отметил, что при бактериальном фотосинтезе вообще не образуется О2 и что бактерии должны иметь в распоряжении какой-то восстановитель — источник водорода для восстановления СО2 [уравнение (13-25) ]  [c.37]

    Фотохимическая реакция—химическая реакция, вызываемая действием света. Напр., фотосинтез в растениях, распад бромида серебра в светочувствительном слое фотопластинки, превращение молекул кислорода в озон в верхних слоях атмосферы, взаимодействие хлора с водородом на свету с образованием НС1 и т. д. Фотохимия — область химии, которая занимается изучением фотохимических реакций. [c.145]

    Земли в атмосферу окислительную в результате выделения кислорода при фотосинтезе. В настоящее время предполагают, что процесс фотолиза воды в верхних слоях атмосферы с удалением водорода в космическое пространство не смог бы обеспечить образование большого количества кислорода в течение докембрийского периода [18]. [c.1008]

    В толще морских и океанских вод протекают два противоположно направленных процесса. Первый — это образование кислорода за счет фотосинтеза в морских растениях, второй — биохимическое окисление органических и некоторых неорганических веществ. При разложении ОВ погибших морских организмов выделяются частично такие газы, как сероводород, аммиак и водород. Степень насыщенности океанских и морских вод кислородом может быть различной в зависимости от интенсивности перемешивания вод и биохимических процессов. [c.262]

    Убедительным химическим доказательством образования свободных атомов хлора и брома при освещении является тот факт, что эти молекулы вступают в фотохимическую реакцию с газообразным водородом. Эта реакция является цепным процессом, в кинетическом отнощении, сходным с реакцией соединения, которая инициируется в темноте прибавлением следов свободных атомов галогенов, вносимых извне (стр. 112). Фотосинтез бромистого водорода является обратимым процессом. Кинетические исследования полностью подтвердили предположение о том, что при его разложении образуются свободные атомы. [c.126]

    В 1923 г. Тунберг высказал предположение, что в процессе фотосинтеза происходит образование активного водорода из воды. Экспериментальное доказательство этой гипотезы дал спустя 14 лет Хилл, который, показал, что изолированные хлоропласты при освещении катализируют восстановление окислителя (А) и выделение кислорода по следующей схеме  [c.261]

    Различают две фазы фотосинтеза — световую и темновую . В первой фазе имеет место фотолиз воды с образованием атомов водорода и кислорода  [c.321]

    Способность восстанавливать углеродные соединения с помощью солнечной энергии позволила появившемуся живому организму усваивать двуокись углерода, возможно в виде иона карбоната или бикарбоната, из окружающего первичного океана и использовать эту двуокись углерода в качестве источника атомов углерода для образования молекул сахаров и других питательных молекул. Эта реакция составляет сущность процесса фотосинтеза. В зеленых растениях при фотосинтезе происходит восстановление двуокиси углерода до альдегида (углевода), при котором вода служит первичным источником атомов водорода, а в атмосферу выделяется высвобождаемый при таком восстановлении кислород. Так же как и при анаэробном метаболизме (см. разд. Первичный метаболизм ), каждая реакция, входящая в процесс фотосинтеза, требует участия строго специфического фермента. [c.39]

    В дальнейшем были выявлены две фазы процесса фотосинтеза первая из них идет на свету а сводится к разлон ению воды, выделению кислоро-рода и возникновению с участием водорода восстановленных соединений, вторая (темновая) включает ассимиляцию углекислоты и образование различных органических соединений. [c.43]

    Уже давно в теориях фотосинтеза предполагалось участие окислительно-восстановительных реакций в этом процессе. Однако в ранних теориях в основном внимание уделялось постулированному первичному акту переноса атомов водорода от воды к углекислоте. В 1941 г. в результате блистательного сравнительного анализа биохимии фотосинтетических процессов в самых разнообразных организмах Ван Ниль [426] высказал предположение, что первичный фотохимический акт включает образование первичного окислителя и первичного восстановителя. [c.413]

    Таким образом, из всех вышеприведенных аргументов за и против промежуточного образования перекиси водорода при фотосинтезе остается в силе наб.1юдение Гаффрона о продолжении фотосинтеза у некоторых штаммов Seenedesmus, у которых активность каталазы полностью подавлялась цианидом. Этот опыт подтверждает, что разложение перекиси водорода каталазой не является частью химического механизма фотосинтеза. Гаффрон [37] считает, что перекись водорода не находится среди промежуточных продуктов окисления водорода у адаптированных водорослей. [c.295]


    В Сент-Луисе наступало знойное лето, и для того, чтобы поставить новые опыты, Гест отправился на Морскую станцию Гопкинса на тихоокеанском побережье в Калифорнии, где нам предоставили возможность работать. Он выращивал R,. rubrum на измененной среде Хутнера в колбах с притертой пробкой. Источником углерода в среде служила натриевая соль яблочной кислоты. Когда R. rubrum расщепляет эту соль, чтобы получить из нее углерод, высвобождается едкий натрий и немного углекислоты. Углекислота растворима в щелочи, и потому она должна была быстро переходить в жидкость. Но Гест обнаружил, что в закрытых колбах образуется большое количество газа — на поверхности жидкости появляется толстый слой пены. Он быстро определил, что этот газ — водород. Бактерии образовывали примерно столько же водорода, сколько и углекислоты. Все это вместе было непонятно, так как образование водорода при фотосинтезе ранее никогда не наблюдалось и так как эти бактерии имеют активную систему для использования молекулярного водорода в присутствии углекислоты. Хотя в колбах имелось большое количество углекислоты, свободный молекулярный водород все же выделялся. [c.58]

    То же относится и к химическим процессам. Взаимодействие водорода и кислорода с образованием воды может происходить самопроизвольно, и осуществление этой реакции дает возможность получать соответствующее количессво работы. Но, затрачивая работу, можно осуществить и обратную реакцию — разложения воды на водород и кислород, — например, путем электролиза. И другие химические реакции, которые по своим термодинамическим параметрам не могут в данных условиях совершаться самопроизвольно, можно проводить, затрачивая работу извне. Большей частью это осуществляют или путем электролиза, или при электрическом разряде в газах, или действием света, или же путем повышения давления (причем одновременно изменяются и условия проведения реакции). Из хорошо известных процессов такого рода можно назвать фотосинтез в растениях, получение натрия и хлора путем электролиза расплавленного хлористого натрия, получение металлического алюминия из бокситов путем электролиза, синтез аммиака при высоком давлении и др. [c.209]

    Вода также непосредственно участвует в метаболизме. Она служит источником кислорода, выделяемого в ходе фотосинтеза, и водорода, используемого для восстановления углекислого газа. При образовании АТФ — важного микроэнерге-тического соединения — из АДФ и фосфата происходит отщепление воды иными словами, фосфорилирование есть не что иное, как процесс дегидратации, происходящий в водном растворе в биологических условиях. Таким образом, знание многих уникальных свойств воды имеет громадное значение для общего понимания физиологии растений и животных. [c.44]

    Как и при дыхании, СОа нельзя считать продуктом, получаемым при использовании вдыхаемого Ог (т. е. по реакции С + О СОг). Молекула СО2 представляет группу атомов, выделяемых из карбоксильных радикалов пищевого субстрата после отнятия от него атомов водорода и сжигания их до воды (4Н + Оа 2НгО). Также и при фотосинтезе СОг не разлагается на С и Ог, а целиком прямо внедряется в довольно сложные органические молекулы, превращая их в конечном итоге в углеводы. Кислород выделяется при этом из воды, отдающей свой водород для восстановительного процесса при образовании углеводов. [c.341]

    Несмотря на такое значение фоторадиолиза воды и биокаталитического ее образования при дыхании из свободного кислорода и атомов водорода, отнимаемых от молекул пищевых веществ при содействии дегидрогеназ, наука наша имеет пока все еще далеко не полные сведения о сложнейших тайнах протекания процессов фотосинтеза углеводов, белков и жиров, а также процессов дыхания. [c.350]

    Поскольку при переходе в возбужденные состояния (синглетные и триплетные) энергия молекул повышается, последние приобретают химические свойства, которых не было у невозбужденных молекул [67, 67а]. Изменения значений рА а функциональных групп при переходе в возбужденное состояние могут приводить к диссоциации протонов или к их присоединению. Диссоциация на ионы или радикалы иногда сопровождается разрывом связей. Могут протекать реакции фотоприсоединения и фотоотш,епления, а также изомеризация молекул, играюш,ая важную роль в функционировании зрительных рецепторов. Возбужденные молекулы могут стать сильными окислительными агентами, способными принимать атомы водорода или электроны от других молекул. Примером такого рода служит фотоокисление ЭДТА рибофлавином (подвергающимся фотовосстановлению, как показано на рис. 8-15). Более важным с точки зрения биологии процессом является фотосинтез, в ходе которого возбужденные молекулы хлорофилла осуществляют фотовосстановление других молекул, временно оказываясь при этом в окисленном состоянии. К сожалению, ценность исследования фотохимических реакций сильно снижается возможностью протекания множества параллельных реакций, зачастую приводящих к образованию огромного количества разных фотохимических продуктов (достаточно взглянуть на тонкослойную хроматограмму продуктов распада рибофлавина, рис. 2-34). [c.33]

    Процесс фотосинтеза может быть выражен суммарным уравнением (1), которое отражает тот хорошо известный факт, что для осуществления в растениях фотосинтеза необходима вода и что в качестве побочного продукта реакции выделяется кислород (из воды). В фотосинтезирующих бактериях кислород не образуется и используются другие доноры водорода [НгХ например, H2S или лактат СИзСН (ОН) 0 см. уравнение (2)). Хилл в 1937 г. и Арнон в 1954 г. показали, что образование NADPH и АТР, необходимых для связывания диоксида углерода, не зависит от их использования в фотосинтетическом цикле восстановления углерода. Эти наблюдения позволили формально разделить реакцию фотосинтеза на световую реакцию (образование NADPH и АТР) и темновую реакцию, в которой диоксид углерода превращается в углевод. [c.397]

    У прокариот известны три способа получения энергии разные виды брожения, дыхания и фотосинтеза. В процессах брожения в определенных окислительно-восстановительных реакциях образуются нестабильные молекулы, фосфатная группа которых содержит много свободной энергии. Эта фуппа с помощью соответствующего фермента переносится на молекулу АДФ, что приводит к образованию АТФ. Реакции, в которых энергия, освобождающаяся на определенных окислительных этапах брожения запасается в молекулах АТФ, получили название субстратного фосфо-рилирования. Их особенностью является катализирование растворимыми ферментами. Образующийся в восстановительной части окислительно-восстановительных преобразований сбраживаемого субстрата восстановитель (НАД Н2, восстановленный фер-редоксин) переносит электроны на подходящий эндогенный акцептор электрона (пируват, ацетальдегид, ацетон и др.) или освобождается в виде газообразного водорода (Нз). [c.94]

    В процессах дыхания и фотосинтеза освобождающаяся при переносе электронов энергия запасается первоначально в форме электрохимического трансмембранного градиента ионов водорода (ДДн+)> т.е. имеет место превращение химической и электромагнитной энергии в электрохимическую. Последняя затем может быть использована для синтеза АТФ. Поскольку в обоих процессах синтез АТФ обязательно связан с мембранами, реакции, приводящие к его образованию, получили название мембранзави-симого фосфорилирования. Последнее подразделяется на два вида окислительное (АТФ образуется в процессе электронного переноса при окислении химических соединений) и ф о-тосинтетическое (синтез АТФ связан с фотосинтетическим электронным транспортом) фосфорилирование. Следует подчеркнуть, что принципы генерации АТФ при фотосинтезе и дыхании, т. е. механизмы мембранзависимого фосфорилирования, одинаковы. Таким образом, энергия, получаемая в процессах брожения, дыхания или фотосинтеза, запасается в определенных формах. [c.97]

    Возникновение ЛУ-связей тесно связано с образованием лигнина в процессе лигнификации клеточной стенки [3, 5, 16]. Биогенез лигнина [39] можно разделить на три стадии образование низкомолекулярных предшественников, например шикимовой кислоты и соединений фенилпропанового ряда, превращение в спирты (см. формулы I—III) и их гликозиды и дегидрогенизацию этих спиртов с образованием высокомолекулярного лигнина. Гликозиды спиртов I—III в растениях образуются в районе между местом фотосинтеза и камбием или даже в камбии [39]. Из камбия гликозиды диффундируют к месту, где протекает процесс лигнификации, т. е. в 3—4-й слои клеток от камбия. Здесь они контактируют с ферментом р-глюкозндазой, которая освобождает гликозиды с образованием спиртов 1—III, участвующих в дальнейшем синтезе лигнина при помощи фенолдегидрогеназ, представленных лакказой и пероксидазой. Ферменты образуют радикалы путем отделения водорода от фенольной группы, далее образующие олигомеры и полимеры лигнина. Сначала к полисахариду в некоторых [c.181]

    Термодинамические свойства углеводородов и продуктов их окисления представляют особый интерес ввиду того, что ценность углеводородов как горючего зависит от разности менеду величиной их внутренней энергии и соответствуюш ими величинами продуктов сгорания. Однако ввиду того, что при сгорании не все реакции протекают до конца, т. е. до образования двуокиси углерода и воды, возникает также необходимость знать термодинамические свойства многих устойчивых и неустойчивых промежуточных соединений углерода, водорода и кислорода, образуюш,ихся при горении. Животные также получают необходимые им тепло и энергию за счет процесса окисления, сопровонгдаюш егося попутным образованием многочис-денных нестойких и устойчивых промежуточных продуктов. Растения завершают вторую часть этого цикла. Используя солнечный свет в качестве первичного источника энергии для процесса фотосинтеза, растения жадно поглощ ают двуокись углерода из атмосферы, связывают ее с водой и синтезируют соединения, менее деградированные в энергетическом отношении. После того как этот процесс образования менее деградированных соединений пройдет через целый ряд стадий, определенное промежуточное соединение (например, сахар) может являться вполне подходящим горючим для осуществляемого в организмах животных цикла деградации. Таким образом, процессы, ведущие к рассеиванию энергии или к накоплению ее, постоянно протекают с образованием многочисленных общих промежуточных соединений, содержащих углерод, водород и кислород. Эти соединения играют ваншую роль, поскольку они охватывают всю [c.458]

    Существенным наблюдением является то, что аденозинтрифосфорная кислота образуется в процессе фотосинтеза за счет реакции окисления (дыхания), протекающей параллельно реакциям восстановления. При этом при фотохимических реакциях теряется примерно /3 водорода, связываемого в виде дигидродегидразы, но зато образуются за счет темповой реакции две высокоэргические фосфатные связи, необходимые для последующих синтезов. Реакция образования аденозинтрифосфор-нон кислоты происходит только в присутствии ферментов, содержащихся в митохондриях клеток зеленых листьев. При инкубации хлоропластов, митохондрий, Kol, неорганического фосфата и АДФ был осуществлен фотохимический синтез АТФ (Охоа) [c.261]

    Эта реакция названа реакцией Хилла , или хлоропластной реакцией . Использовали ряд окислителей, в том числе ионы трехвалентного железа, бензохинон и различные красители, такие, как 2,6-дихлорфенолиндофенол. Углекислота не ассимилируется и не может служить акцептором водорода. Однако найдено, что каталитические количества углекислоты стимулируют реакцию Хилла. Механизм этой стимуляции не ясен. Реакции Хилла свойственны две характерные особенности фотосинтеза растений — превращение световой энергии в химическую и образование молекулярного кислорода [c.261]

    Было высказано предположение, что первичная световая реак ция в фотосинтезе и реакции Хилла заключается в фотолизе водь для создания восстановительного потенциала водорода и окисли тельного потенциала гидроксила. При фотосинтезе водород в конеч ном счете восстанавливает углекислоту с образованием углеводов, а при реакции Хилла водород восстанавливает добавленный окислитель. В обоих случаях гидроксил в конечном счете освобождает молекулярный кислород. Эти реакции представлены в табл. 23. Согласно предложенной схеме, весь кислород, выделяемый при фотосинтезе, происходит из воды. Используя НгО , удалось показать, что кислород, выделяемый в процессе фотосинтеза, действительно происходит из воды, а не из углекислого газа. [c.261]

    Для практических целей может оказаться необходимым отделить активируемую светом стадию фотосинтеза, на которой образуется кислород, от стадии темновых реакций, где выделяется водород. Одностадийная система будет продуцировать смесь кислорода и водорода, и их улавливание и разделение со всей площади коллектора солнечной энергии могут оказаться невыполнимыми. Но можно представить себе И двухстадийный процесс, на первом этапе которого будет функционировать фотока-талитич ская система, в которой образуются неокисляемый пе- реносчвд1 и кислород. Кислород можно улавливать, а образовавши] " переносчик водорода будет использоваться на второй стадий когда осуществляется темновая реакция образования водо-родк Вслед за этим переносчик направляется обратно в первый отсек установки, восстанавливается там в ходе световой реакции и может использоваться для повторного цикла реакций. [c.81]

    Указанные микроорганизмы содержат пигмент, близкий к хлорофиллу. Считается, что у них фотохимическое восстановление СО2, так же как и у высших растений, происходит за счет водорода воды. Однако при бактериальном фотосинтезе образования кислорода не происходит. Восстановление гидроксил-акцептируюш,их систем здесь происходит за счет окисления тех или иных донаторов водорода. Например, серобактерии при фотосинтезе окисляют НаЗ [c.85]


Смотреть страницы где упоминается термин Водород образование при фотосинтезе: [c.66]    [c.10]    [c.223]    [c.317]    [c.478]    [c.263]    [c.274]    [c.17]    [c.387]    [c.169]    [c.508]    [c.104]    [c.234]    [c.38]    [c.61]   
Основы биологической химии (1970) -- [ c.327 ]




ПОИСК





Смотрите так же термины и статьи:

Фотосинтез



© 2024 chem21.info Реклама на сайте