Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Способы окисления периодический

    Производство нефтяных битумов осуществляют разными способами продувкой гудронов воздухом, перегонкой мазутов с глубоким отбором дистиллятов, деасфальтизацией гудронов пропаном. Широко применяют также компаундирование продуктов различных процессов. Основным процессом производства битумов в нашей стране является окисление — продувка гудронов воздухом. Окисленные битумы получают в аппаратах периодического и непрерывного действия, причем доля битумов, полученных в аппаратах непрерывного действия, — более экономичных и простых в обслуживании — постоянно увеличивается. Среди аппаратов непрерывного действия наиболее эффективными являются пустотелые колонны с разделенными секциями реакции и сепарации прореагировавших фаз. [c.6]


    Как только что упоминалось, в промышленности парафин окисляют почти исключительно по периодическому способу. Вследствие этого необходимо более подробно описать принципиальные особенности этого способа, пользуясь общей схемой производства жирных кислот из парафина окислением воздуха, изображенной на рис. 87. [c.453]

    Особенности технологического процесса 1) кислородно-конверторный способ. Окисление примесей проводят в специальных аппаратах— конверторах продуванием воздуха через расплавленный чугун (нижнее дутье) или кислорода над расплавом (верхнее дутье) 2) мартеновский способ. Примеси окисляют в мартеновских печах, пропуская предварительно нагретый в регенераторах воздух и топочные газы над расплавленным чугуном. Производство периодическое. [c.182]

    В литературе недостаточно сведений о сравнении состава битумов, полученных различными способами окисления одного и того же сырья. В БашНИИ НП проведено [38] сравнение группового состава битумов, полученных в периодических кубах-окислителях битумной установки Ново-Уфимского НПЗ и непрерывным окислением в трубчатом реакторе пилотной установки БашНИИ НП, на которой моделируются основные параметры заводской установки. Сырьем для обеих установок являлся гудрон туймазинской нефти с температурой размягчения 37 С и условной вязкостью 92 сек при 80 °С. [c.285]

    Удельный расход пара на установке колонного типа на 42% меньше, чем на установке со змеевиковым реактором, и примерно такой же, как фактически имеет место на установке бескомпрессорного способа окисления. На установке с кубами-окислителями периодического действия удельный расход пара на 50% больше, [c.292]

    Себестоимость 1 т битума зависит от местных условий. Однако на установках колонного типа она ниже, чем на установках со змеевиковым реактором, при бескомпрессорном способе окисления и на установках с кубами-окислителями периодического действия. [c.293]

    Непрерывный способ окисления АзгОз азотной кислотой в двух каскадно расположенных реакторах с мешалками позволяет достичь более высокого выхода мышьяковой кислоты, чем периодический, обеспечивает спокойное ведение процесса, так как исключает резкое изменение скорости реакции и переброс реакционной смеси (который иногда имеет место в первой стадии процесса при осуществлении его периодическим способом) и, наконец, облегчает регенерацию азотной кислоты из окислов азота вследствие постоянства их концентрации. [c.668]

    Мальтены двух способов окисления также отличаются по своим свойствам. При непрерывном процессе наблюдаются более низкие значения вязкости, молекулярного веса, плотности мальтенов, чем при периодическом окислении, что можно объяснить снижением концентрации смол и повышением содержания масел. [c.61]


    Качество спиртов, расход сырья и реагентов находятся в прямой зависимости от селективности процесса окисления. В нашей стране проводятся исследования по ее повышению и совершенствованию технологии получения вторичных спиртов. В результате анализа действующего процесса были установлены причины низкой селективности окисления. Основные из них отсутствие стадии специальной подготовки борной кислоты, без которой она оплавляется и налипает на днище использование циркулирующего газа-окислителя без очистки от паров накапливающихся в нем веществ, резко снижающих селективность при периодическом способе окисления неудачная конструкция окислительных колонн неоптимальная степень окисления [170]. [c.201]

    Основным способом производства нефтяных битумов является окисление тяжелых остатков вакуумной перегонки мазута де-асфальтизации гудрона пропаном [57]. В качестве окисляющего агента используют воздух. Процесс осуществляют в реакторах колонного и трубчатого типа, а также в кубах периодического либо непрерывного действия. [c.207]

    Необходимо было найти такой метод осуществления реакции окисления, при котором образовавшиеся жирные кислоты непрерывно выводились бы из реакционной смеси. В этом случае можно было изменить принципы периодического способа окисления парафиновых углеводородов в жидкой фазе. После длительных поисков наиболее рациональных способов непрерывного извлечения высших жирных кислот мы остановились на наиболее рентабельном, с нашей точки зрения, способе. [c.30]

    Процесс собственно окисления может проводиться непрерывно или периодически, однако последний способ является в технике пока еще наиболее распространенным. [c.453]

    Наименьший расход топлива на установке колонного типа объясняется тем, что при одной и той же температуре реакции окисления (250°С) тепловой эффект на этой установке используется на нагрев сырья (температура поступающего сырья 120—170°С). Для змеевикового реактора вследствие малого времени пребывания сырья в змеевике и необходимости достаточной скорости реакции окисления на входе в змеевик нельзя допускать температуру ниже требуемой. Поэтому на этих установках на входе в змеевик поддерживается температура 250°С, а тепло реакции снимается обдувом труб при помощи вентиляторов. Опыт эксплуатации опытно-промышленной установки бескомпрессорного способа получения битумов на Кременчугском НПЗ показал, что удельный расход топлива значительно ниже предусмотренного проектом. Удельный расход топлива на установке с кубами-окислителями периодического действия на 20% меньше, чем на установке со змеевиковым реактором. [c.292]

    В вышеупомянутых периодических процессах с фиксированной насадкой соблюдение этого условия достигается посредством разделения во времени, т. е. чередованием периодов продувки воздуха и получения газа, однако этим способо м, осуществляемым под давлением, весьма трудно управлять. В более современных разработках окисление и нагрев циркулирующего топлива происходят в одном реакторе, а разложение паром и [c.134]

    Оптимальный состав катализатора, обеспечивающий высокую избирательность, можно получить и другим способом катализатор находится в неподвижном состоянии, но изменяется по определенному закону состав газовой фазы на входе в реактор. Так, на опытной установке был осуществлен процесс окисления этилена на серебряном катализаторе [51], где периодически изменялась начальная концентрация этилена. При определенных частотах изменения состава было получено значительное увеличение избирательности. По данным А. В. Хасина, скорость образования [c.17]

    Окисление СО в нестационарном режиме на нанесенном платиновом катализаторе изучалось также в работе [21]. На вход без-градиентного изотермического реактора подавали реакционную смесь, состав которой периодически изменялся — в течение первой половины периода подавали смесь оксида углерода с аргоном, в течение второй — смесь кислорода с аргоном. Процесс проводили при температуре 60°С, концентрации СО — О—2%, Оа — О—3%. Максимальная длительность цикла 3 мин. Оказалось, что при нестационарном способе ведения процесса может быть достигнуто 20-кратное увеличение скорости реакции по сравнению со стационарными условиями. Максимальный выигрыш имел место при длительности цикла 1 мин. Результаты экспериментов объясняются так. Предполагая, что образование СОа определяется главным образом скоростью взаимодействия адсорбированных СО и Оа, можно сделать вывод, что эта скорость максимальна в случае примерного равенства концентраций поверхностных форм [ OZ] и [0Z]. Тогда значительное увеличение наблюдаемой скорости образования СОа в нестационарном режиме можно объяснить тем, что в этом случае поверхностные покрытия сохраняли свои значения вблизи этих оптимальных величин. В то же время при стационарном способе ведения процесса степени покрытия [ OZ] и [0Z], как показывают независимые стационарные эксперименты, значительно отличаются по величине, и их произведение мало. [c.37]

    В лабораторных условиях битумы можно получать па лабораторных окислительных установках периодического и непрерывного действия. Далее описан непрерывный способ получения окисленных битумов как более перспективный. При проведении экспериментальных работ на пилотной окислительной установке соответствуюш,им подбором параметров процесса можно получать битумы заданных свойств. Поэтому следует уяснить влияние этих параметров на состав и свойства битумов. Нефти с большим содержанием смолисто-асфальтеновых веществ и с малым содержанием твердых парафиновых углеводородов наиболее желательны для цолучения тепло- и морозостойких битумов. В исходном сырье — гудроне перед окислением должно быть ле более 3% твердых парафинов. Парафино-нафтеновые углеводороды являются пластификаторами, и их присутствие (10—12% масс.) в дорожных битумах желательно. Чем больше содержится масел в исходном гудроне и, следовательно, чем ниже его температура размягчения, тем выше пенетрация и ниже температура хрупкости и растяжимости битумов одинаковой температуры размягчения. [c.276]


    Окисленные битумы получают как периодическим, так и непрерывным способами. Непрерывный способ производства может быть бескомпрессорным и компрессорным. Периодический процесс малопроизводителен и дает битум низкого качества. [c.381]

    Другим примером коренной перестройки существующей технологии могут служить новые способы получения гидрохинона и резорцина. Существующий промышленный периодический метод производства гидрохинона основан на окислении анилина в п-бен-зохинон и последующего его восстановления. При этом образуется значительное количество промышленных стоков, содержащих анилин, кислоты, смолы и т. д. Производство резорцина основано на щелочном плавлении ж-бензолдисульфокислоты и также сопровождается образованием значительных количеств промышленных стоков. [c.349]

    Технология получения битумов существенно влияет на их состав. Так, содержание смол в битумах одной и той же температуры размягчения, полученных непрерывным окислением сырья в колонном аппарате и в змеевиковом реакторе, ниже, а содержание асфальтенов и масел несколько выше, чем в битумах, полученных окислением того же сырья в периодическом кубе. Отличаются также структура компонентов и свойства готовых битумов, полученных различными способами. [c.15]

    Представляет интерес содержание кислорода в газообразных продуктах окисления, характеризующее степень использования кислорода воздуха и пожарную безопасность эксплуатации установки. Оно зависит от конструкции реактора, способа контактирования воздуха с сырьем, конструкции распылителей, температуры процесса, а для куба-окислителя периодического действия и от стадии окисления сырья. В начальной стадии окисления сырья в таком кубе содержание кислорода в газообразных продуктах окисления минимальное—1 — 3 вес.%. По мере углубления процесса и повышения температуры размягчения продукта оно возрастает и может достигнуть 8—12 вес.% и более. Содержание кислорода в газообразных продуктах окисления свежего сырья, непрерывно поступающего в пустотелую окислительную колонну, составляет от О до 2 вес.%. Примерно такое же содержание кислорода на установках непрерывного окисления сырья в пенной системе в змеевиковых реакторах. [c.175]

    Различие в свойствах дорожных битумов, полученных при атмосферном и высоком давлениях, менее выражено, в то время как с углублением окисления сырья и с увеличением доли отдува различие в свойствах строительных битумов, полученных разными способами, становится более выраженным. Изложенное согласуется с выводами ряда исследователей, показавших повышение пенетрации и теплостойкости битумов ири возвращении части отдува на смешение с окисленным продуктом. Степень использования кислорода воздуха при окислении сырья наихудшая в кубах периодического действия, а из непрерывных процессов — при бескомирессорном способе. Содержание кислорода в газообразных продуктах окисления в кубе периодического действия 6—16%, в аппарате колонного типа 0,5—2%, в змеевиковом реакторе [c.289]

    Для производства окисленных битумов применяют главным образом горизонтальные и вертикальные цилиндрические кубы, колонные аппараты и змеевиковые реакторы периодического, полунепрерывного и непрерывного действия. Они имеют устройства для подачи воздуха, удаления отработанных газов, контроля и регулирования расхода сырья и воздуха, температуры и уровня продукта. Установки могут значительно отличаться друг от друга способом подачи воздуха и схемой обработки отходящих газов. В литературе приводятся описания окислительного куба с внутренней мешалкой и системой отражающих экранов для равномерного распределения воздуха и лучшего контакта с жидкой фазой [448] одноступенчатой установки непрерывного окисления [387] системы из вертикальных колонн, совмещающих процессы перегонки сырья и окисления остатков с противотоком сырье — воздух [397] окислительной установки из двух последовательно работающих кубов, оборудованных мешалкой с электроприводом [522] установки из трех колонн [340]. Предложен также реактор, состоящий из ряда ячеек, через которые последовательно проходит окисляемое сырье, контактируемое с воздухом. Битум, отбираемый из разных ячеек, имеет различную степень окисления [334]. [c.178]

    Однако эти методы уступгют очистке с помощью растворов серной кислоты. Заслуживает внимания непрерывный экстракционный метод очистки НСО смесью водных растворов ароматических сульфокислот и серной кислоты, детали которого требуют дальнейшего изучения. Этот способ пригоден как для очистки НСО, полученных из сульфидных концентратов, так и для выделения НСО из окисленных перекисью водорода фракций дизельного топлива. Непосредственное окисление фракций дизельного топлива с последующим выделением из них НСО в настоящее время разработано Институтом нефтехимического синтеза им. Топчиева, Казанским химико-технологическим институтом и значительно усовершенствовано НИИНефтехимом. Мы в своей рабоге также получали НСО этим способом в периодическом режиме при нагревании реакционной смеси (диз. топлива + перекись водорода) до 80—90 "С, используя в качестве катализатора серную кислоту, и считаем, что этот метод значительно технологичнее, чем применение уксусной кислоты, ввиду отсутствия промывок диз. топлива и сульфоксидов от уксусной кислоты. [c.35]

    На установке подобного типа можно проводить и периодическое окисление сырья. Непрерывный способ целесообразно применять в тех случаях, когда требуется получать продукт с постоянными свойствами и когда на окисление поступает сырье стабильного качества. Непрерывная схема позволяет, кроме того, работать с наибольшей производительностью при условии непрерывного поступления сырья с установок АВТ. Если нул<но получить небольшое количество продукта разных свойств, что требует изменения условий продувки, то процесс лучше всего проводить по периодической схеме. При этом значительно возрастают затраты времени на процесс. [c.193]

    Периодический способ имеет следующие недостатки. В кубе-окислителе периодического действия сырье длительное время (до 70 ч) находится в зоне реакции при высоких температурах, в результате чего возникают более глубокие изменения в составе битума и ухудшение его свойств. Возможны местные перегревы, приводящие к образованию карбенов и карбоидов и ухудшающие реологические свойства битума. Периодическим процессом окисления сырья в битумы управлять трудно. В зависимости от природы сырья существует оптимальный режим повышения температуры размягчения (понижения пенетрации либо повышения вязкости) во времени. Для каждого сырья существуют оптимальные температура процесса окисления и расход воздуха. Причем не всегда требуется стабилизация скорости подачи воздуха. Так, вначале необходимо постепенное повышение, затем в каком-то интервале температуры размягчения битума — стабилизация расхода воздуха, а затем при приближении к завершению процесса — некоторое понижение. Характер изменения скорости подачи воздуха зависит от природы сырья. Температура процесса меняется в зависимости от подачи воздуха и теплового эффекта реакции. Последний является функцией природы сырья и температуры процесса. Следовательно, съем тепла реакции необходим по определенной программе, различной для разных сырья и глубины окисления, меняющейся во времени с углублением процесса. [c.284]

    Перспективным способом окисления гудронов считается применение реакторов колонного типа. Типы реакторов для окисленных битумов 1) кубы непрерывного или периодического действия 2) змеевиковые реакторы с длиною труб 200—300 м 3) колонны с использованием воздуха для перемешивания продукта либо снабженные специальными турбинными мешалками (турбореактор). [c.207]

    На Московском НПЗ гудрон получен из смеси татарских нефтей, на Кременчугском — из смеси украинских и мангышлакских, на Киришском — из смеси тэбукской и ромашкинской. Сравнение свойств битумов, полученных на Киришском НПЗ окислением гудронов в змеевиковом реакторе и в колонном аппарате, дается на основании данных Ю. М. Баженова [15, 16]. Во всех случаях температура окисления была в пределах 240— 260 °С. Видно, что практически свойства битумов одинаковой температуры размягчения, полученных при одной и той же температуре непрерывным способом окисления одного и того же сырья, одинаковы. Тепло- и морозостойкость битумов, полученных непрерывным способом окисления, лучше, чем битумов, полученных в периодических кубах-окислителях. [c.287]

    Исследование влияния способа окисления на свойства битумов нами проводилось на образцах битумов непрерывного и периодического окисления гудрона нефтей туймазинской, арланской, смеси анастйсьевской и ильской, смеси ухтинской, черну-шинской, ромашкинской. < [c.59]

    Установленные закономерности влияния способа окисления на состав и свойства компонентов следует объяснять различными условиями проведения процессов. Процесс непрерывного окисления в трубчатом реакторе отличается от периодического окисления в к бах высокоразвитой поверхностью контакта реагирующих фаз, малым временем пребывания сырья в зоне реакции и интенсивным перемешиванием окисляемого сырья вследствие проведения процесса в пенном режиме. Кроме того, при нёпргрывном окислении осуществляется рециркуляция окисленного битума, благодаря чему в реакторе происходит компаундирование свежих порций гудрона с окисленным битумом. Вероятно, в этих условиях значительно ускоряются реакции окислительной поликонденсации наиболее высокомолекулярных. [c.62]

    Комбинация окислительных кубовых батарей с кубами периодического действия (схема полунепрерывнвго действия), при которой окончательное окисление битума до нужных качеств производится в периодическом кубе, позволяет получить кондиционную продукцию. Однако такая полунепрерывная установка существенных тех-нико-экономических преимуществ перед установками периодического действия не имеет. В то же время управление ею сложнее. Этот способ окисления битума широкого промышленного применения не нашел. [c.20]

    I строения обусловливают несколько иной характер промежуточ- ных и побочных реакций, протекающих в системе, и иные коли-% чественные соотношения между получающимися продуктами, ч, - При периодическом так называемом жидкофазном способе окисления керосиновых фракций реакция фактически разви- вается не только в жидкой, но также и в пародисперсной фазе окис тительной колонны [c.17]

    В пронышленном масштабе окисление по методу "Mld- entury" может проводиться периодическим, полунепрерывным и непрерывным способами. При периодическом способе в реактор загружают углеводород, растворитель, катализатор и смесь нагревают до температуры peas- [c.79]

    К положительным сторонам непрерывного способа окисления жпдкпх парафинов следует отнести меньшие капиталовложения, чем ири периодическом способе, и пспользованне менее дефицитного сырья, а такя б более высокие выходы целевых продуктов. [c.67]

    На аппаратах периодического действия окисление проводят раствором, содержащим 2—3% от веса материала бихромата калия и 3—4% от веса материала уксусной кислоты 30%-ной, в течение 15—20 мин. При крашенин непрерывным способом окисление проЕОДят либо раствором, содержащим 0,5—2 г/л перекиси водорода 30%-ной и 1—2 г/л уксусной кислоты 30%-ной, при 30—40 С, либо раствором, содержащим 1—3 г/л бихромата калия и 3—5 г/л уксусной кислоты 30%-ной при 80—90 °С. После окисления следует тщательная промывка окрашенного материала. [c.94]

    Наиболее разработанными сейчас оказываются два способа получения синтетических жирных кислот (СЖК) — периодическое окисление твердых нарафиновых углеводородов и непрерывное окисление жидких парафиновых углеводородов, рассмотренные ниже (гл. VIII). [c.92]

    В газообразных продуктах окислепия содержатся пары поды, азот, кислород, окись и двуокись углерода и углеводороды (отдув). Выход отдува увеличивается с повышением температуры и глубины окислепия. Содержание свободного кислорода характеризует степень использования кислорода воздуха, что зависит от конструкции реактора, способа контактирования воздуха с сырьем и температуры процесса. Обычно содержание свободного кислорода в газообразных продуктах окисления составляет до 5% д.мя ненрерывнодействующих реакторов колонного и змеевикового ТИН011, до 16% для кубов-окислителей периодического действия. [c.276]

    В качестве инициаторов окисления рекомендуются нафтена-ты, линолеаты и ацетаты марганца, кобальта и свинца [151, 130, 152], соли щелочных и щелочноземельных металлов и сильных кислот [153]. В ряде патентов предлагается проводить жидкофазное окисление изопропилбензола при 90—130° С в нрисутствии тонкоизмельченных карбоната или бикарбоната нат1рия, суспендированных в реакционной смеси в количестве от 0,5 до 25 г на 100 мл изопропилбензола [154, 155]. После реакции продукты отделяются от соды или бикарбоната, обрабатываются горячей водой, и после отстаивания при 90° гидроперекись изопропилбензола отделяется, а сода или бикарбонат периодически регенерируются путем промывания сначала ацетоном, а затем водой. По этому способу гидроперекись изопропилбензола получается с выходом 83% от теоретического. [c.260]

    Рассмотрим схему получения УВ на основе ПАН-волокна по периодическому методу (рис. 1.23). Волокно с бобин (1) наматывается на жесткую раму (2), предотвращающую усадку волокна. Рама (2) помещается в печь (3) для окисления волокна, туда же подается нагретый воздух. Окисленное волокно разрезается и укладывается в формы для дальнейшей обработки. Карбонизация и графитация проводятся в печах. Волокно момшо также окислять на бобинах, цилиндрах и др. устройствах. К недостаткам периодического способа следует отнести ограниченную длину получаемых жгутов около 1 м, низкуто производительность оборудования, периодичность нагрева и охлаждения печей карбонизации и графитации. Кроме того, создаются неблагоприятные условия для контакта нити с воздухом. Внешние слои свободно омываются воздухом, тогда как к внутренним достутг воздуха затруднен. При таком способе исключается возможность вытягивания волокна. [c.67]

    Данные авторов [39] согласуются с результатами, нашего [103] сравнения группового состава битумов, полученных периодическим способом в кубе-окислителе и непрерывным окислением в опытно-промышленном колонном аппарате из одного и того же сырья. Состав битума, полученного в змеевиковом реакторе, аналогичен составу битума, окисленного в колонном аппарате. Битумы непрерывного окисления хэрактеризуются большим содер-жанием масел и асфальтенов и меньшим содержанием смол по сравнению с битумами, полученными в результате периодического окисления того же сырья. [c.286]


Смотреть страницы где упоминается термин Способы окисления периодический: [c.191]    [c.49]    [c.67]    [c.54]    [c.151]    [c.287]   
Нефтяные битумы (1973) -- [ c.183 , c.284 ]




ПОИСК





Смотрите так же термины и статьи:

Способы окисления



© 2025 chem21.info Реклама на сайте