Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализаторы гидрокрекинга

    Естественно, катализаторы бифункционального катализа до — лжны содержать в своем составе одновременно оба типа центров — и металлические (м.ц.), и кислотные (к.ц.). Так, полиметаллический алюмоплатиновый катализатор риформинга представляет собой пла — тину, модифицированную редкоземельными металлами (например, Яе), на носителе — окиси алюминия, промотированном кислотой (хлором). В катализаторе гидрокрекинга, например, алюмокобаль— тмолибденцеолитовом (или алюмоникельмолибденцеолитовом), Со + Мо или Ы1+Мо осуществляют гидрирующе —дегидрирующие функции, а цеолит является кислотным компонентом. В качестве примера приведем возможные схемы протекания подобных реакций. [c.95]


    Разработан новый катализатор гидрокрекинга, который устойчив к соединениям, содержащим серу и азот. Катализатор состоит из небольшого количества благородного металла на специальной подложке. Действие серы и азота можно компенсировать повышением температуры при содержании 0,1% азота температуру повышают на 70, а ири содержании 0,5% серы — только на 13 °С [c.71]

    Роль кислородсодержащих соединений изучена относительно мало. Однако показано что уменьшение удельной поверхности катализатора гидрокрекинга Р1 на алюмосиликате, модифицированного цирконием, не коррелирует ни с интенсивностью отложения кокса (выжигаемого при регенерации), ни со структурой применяемого сырья и содержанием в нем азота (в виде пиридина) или серы (в виде тиофена). Уменьшение удельной поверхности коррелирует только с содержанием в сырье кислородсодержащих соединений. На основании этого был сделан вывод, что причиной уменьшения [c.322]

    Повышение универсальности процессов гидрокрекинга и вовлечение в их сырьевую базу тяжелых дистиллятов, остатков и сырой нефти определили необходимость подбора усовершенствованных стационарных катализаторов гидрокрекинга с целью получения мало-сернистого котельного топлива, а также разработки специальных технологических схем, позволяющих непрерывно регенерировать катализатор. Это так называемые системы с трехфазным псевдоожиженным слоем, разрабатываемые в США и СССР и деструктивная гидрогенизация в циркулирующем потоке катализатора , создаваемая в СССР. В этих процессах тяжелое сырье образует жидкую фазу со взвешенным катализатором, в которую подается сжатый водород. Катализатор либо непрерывно отбирается для регенерации, а в систему добавляется регенерированный и свежий через специальное устройство (процессы Н-,011, Ну-С, Ну-О и др.), либо непрерывно циркулирует между реактором и регенератором (процесс ИНХС АН СССР). Эти процессы, как видно из табл. 4, также прошли большой путь, видоизменяясь и приспосабливаясь к все менее благоприятному сырью . Как и в процессах со стационарным слоем, решающим направлением было усовершенствование катализаторов. Так, например, разработка специального микросферического катализатора для процесса Н-01Р позволила значительно упростить процесс, увеличить глубину превращения сырья, снизить капитальные затраты. [c.95]

    Катализаторы. Ассортимент современных катализаторов гидрокрекинга достаточно обширен, что объясняется разнообразием назначений процесса. Обычно они состоят из следующих трех [c.226]

    Приводится обзор патентов по катализаторам гидрокрекинга дистиллятов и мазутов. [c.90]

    ТАБЛИЦА 2.25. Характеристика катализаторов гидрокрекинга и гидрооблагораживания сырья [c.152]


    Отношение С3 -)-С4 к С -Ь 2 используется для характеристики катализаторов гидрогенизационных процессов, что важно при их подборе. Примером может служить оценка трех различных катализаторов гидрокрекинга по составу гидрогенизатов индивидуальных углеводородов (см. табл. 5). [c.124]

    Отмечалось что суммарная активность никелевых катализаторов гидрокрекинга увеличивается в ряду [c.127]

    При сравнении таких катализаторов гидрокрекинга, как иридий, осмий, платина, рутений и родий на кислотных носителях было показано, что при содержании металлов в катализаторе в количестве 0,5% высшей активностью обладал родиевый катализатор, однако наибольший выход углеводородов С5 получен на платиновом катализаторе. [c.320]

    Один из принятых методов улучшения каталитических свойств катализаторов гидрокрекинга — галогенирование. В качестве активаторов используются преимущественно соединения фтора и хлора. [c.138]

    В двухстадийном варианте процесса (рис. 2.28) нагретое сырье и циркулирующий водородсодержащий газ смешивают и пропускают через реактор первой стадии для очистки от серы, азота и частично от ароматических углеводородов, после чего газосырьевая смесь вместе с рециркулирующим остатком и добавочным количеством водорода поступает во второй реактор для контакта с катализатором гидрокрекинга. Продукты, выходящие из второго реактора, отдают тепло сырьевой смеси и поступают в сепаратор высокого давления. Последующее движение продуктов реакции не отличается от предшествующей схемы. [c.153]

    Катализаторы гидрокрекинга вакуумного газойля [c.179]

    Результаты гидрокрекинга в очень сильной степени определяются свойствами катализатора его гидрирующей и кислотной активностью и их соотношением. Применяют катализаторы различного состава и свойств. Соответственно различны температуры процесса и его результаты. В общем катализаторы гидрокрекинга можно разделить на имеющие высокую гидрирующую и относительно низкую кислотную активность и относительно невысокую гидрирующую и высокую кислотную активность. [c.274]

    Катализаторы гидрокрекинга. Данные о применяющихся катализаторах гидрокрекинга практически не публикуются и поэтому весьма ограничены. Из химизма гидрокрекинга следует, что катализаторы с высокой кислотной и умеренной гидрирующей активностью дают значительно лучшие результаты, которые применительно к промышленным видам сырья заключаются в следующем. [c.298]

    С увеличением давления в результате, по-видимому, увеличения глубины гидрирования азотистых соединений до аммиака снижаются степень и скорость дезактивации катализаторов гидрокрекинга азотистыми основаниями (рис. 11.4). [c.300]

    ХОО — катализаторы гидрокрекинга и гидроочистки, [c.384]

    ХЗО — катализаторы гидрокрекинга второй ступени. [c.385]

    На рис. 5.1 приведены относительные константы скорости реакций при гидрокрекинге легкого циркулирующего крекинг-газойля (давление 15 МПа) на одном из катализаторов гидрокрекинга. При этом происходит интенсивное частичное гидрирование полициклических ароматических углеводородов, распад циклановых колец полициклических соединений с образованием в основном изопарафинов. Моноциклические нафтены и парафины расщепляются с меньшими скоростями наиболее трудно протекают реакции гидрирования моноциклических ароматических углеводородов. [c.137]

    Практически во всех схемах со стационарным слоем катализатора предусмотрена возможность проведения окислительной регенерации катализатора непосредственно в реакторных устройствах. Окислительную регенерацию катализаторов гидрокрекинга проводят обычно при 3—6 МПа в токе циркулирующего инертного газа с добавлением в него небольших количеств воздуха. Инертный газ подается циркуляционным водородным компрессором. Количество добавляемого в инертный газ воздуха регулируют таким образом, чтобы при выжиге [c.141]

    VI и VHI групп Периодической системы, нанесенные на различные кислые носители. До последнего времени в качестве носителей применяли в основном окись алюминия и алюмосиликат. В последние годы большое внимание уделяется изучению и разработке катализаторов на цеолитной основе. Эти катализаторы обладают высокой активностью и селективностью и повышенной устойчивостью к воздействию азотсодержащих соединений. Содержание в сырье до 0,2% (масс.) азота практически не влияет на их активность. В табл. 5.2 представлена общая характеристика основных катализаторов гидрокрекинга. [c.138]

    Сильнейшим ядом для катализаторов гидрокрекинга являются азотсодержащие соединения, Например, при гидрокрекинге сырья, содержащего 40 частей/млн. [c.138]

    Характеристика основных катализаторов гидрокрекинга [c.139]

    Установки двухступенчатого гидрокрекинга значительно маневреннее, на них возможна переработка сырья с очень высоким содержанием примесей, отравляющих катализатор гидрокрекинга изменяя условия процесса, можно обеспечить максимальные выходы требуемых продуктов — бензина, реактивного или дизельного топлива (табл. 5.6 и 5.7). В этом случае на первой ступени осуществляется гидроочистка и частичное крекирование сырья, вторая ступень — собственно гидрокрекинг. [c.141]

    Процесс гидрокрекинга представляет собой совокупность ряда параллельных и последовательно протекающих реакций расщепления высокомолекулярных углеводородов, гидрирования продуктов расщепления, гидродеалкилирования алкилароматических углеводородов, гидрогенолиза сероорганических и азотсодержащих соединений и изомеризации углеводородов при давлениях ниже 150—200 ат протекают еще реакции уплотнения и коксообразования. Рабочие условия и катализатор гидрокрекинга обычно выбирают так, чтобы по возможности подавить две последние нежелательные реакции. Удельные соотношения перечисленных основных реакций и их интенсивность в значительной степени определяются типом и избирательностью действия катализаторов, природой и составом исходного сырья, а также рабочими условиями гидрокрекинга. [c.40]


    В последние годы все большее применение находят процессы гР1дрокрекинга высоковязких масляных дистиллятов и деасфальти— затон с целью получения высокоиндексных базовых масел. Глубокое гидр 1рование масляного сырья позволяет повысить индекс вязкости от 50 — 75 до 95—130 пунктов, снизить содержание серы с 2,0 до 0,1 % и ниже, почти на порядок уменьшить коксуемость и снизрггь температуру застывания. Подбирая технологический режим и катализатор гидрокрекинга, можно получать масла с высоким индексом няз кости практически из любых нефтей. [c.241]

    Основные отличия гидрокрекинга от каталитического крекинга заключаются в том, что общая конверсия парафинов выше в первом процессе, чем во втором. Это обусловлено легкостью обра — зс вания алкенов на гидро — дегидрирующих центрах катализаторов ГР дрокрекинга. В результате наиболее медленная и энергоемкая стадия цепного механизма — инициирование цепи — при гидрокрекинге протекает быстрее, чем при каталитическом крекинге без вс дорода. Катализаторы гидрокрекинга практически не закоксо — В1 шаются, так как алкены подвергаются быстрому гидрированию и н< успевают вступать в дальнейшие превращения с образованием продуктов полимеризации и уплотнения. [c.226]

    Сульфиды и оксиды молибдена и вольфрама с промоторами являются бифункциональными катализаторами (с п — и р — прово — дикостями) они активны как в реакциях гидрирования-дегидри— рования (гомолитических), так и в гетеролитических реакциях гидрогенолиза гетероатомных углеводородов нефтяного сырья. Однако каталитическая активность Мо и W, обусловливаемая их дырочной проводимостью, недостаточна для разрыва углерод — угл зродных связей. Поэтому для осуществления реакций крекинга углэводородов необходимо наличие кислотного компонента. Следовательно, катализаторы процессов гидрокрекинга являются по существу минимум трифункциональными, а селективного гидрокрекинга — тетрафункциональными, если учесть их молекулярно — ситовые свойства. Кроме того, когда кислотный компонент в катализаторах гидрокрекинга представлен цеолитсодержащим алюмосиликатом, следует учесть также специфические крекирующие свойства составляющих кислотного компонента. Так, на алюмоси — ЛИР ате — крупнопористом носителе — в основном проходят реакции первичного неглубокого крекинга высокомолекулярных углеводо — ро ов сырья, в то время как на цеолите — реакции последующего бо/ ее глубокого крекинга — с изомеризацией среднемолекулярных углеводородов. Таким образом, катализаторы гидрокрекинга можно отвести к полифункциональным. [c.227]

    Большое значение уделяется в настоящее время катализаторам на цеолитной основе. Они обладают высокой гидрокрекирую— щей активностью и хорошей избирательностью. Кроме того, они г озволяют проводить процесс иногда без предварительной очистки сырья от азотсодержащих соединений. Содержание в сырье до 0,2 о азота практически не влияет на их активность. Повышенная с ктивность катализаторов гидрокрекинга на основе цеолитов обус — /овливается более высокой концентрацией активных кислотных 1[ентров (бренстедовских) в кристаллической структуре, по сравнению с аморфными алюмосиликатиыми компонентами. [c.228]

    В случае переработки тяжелого сырья наибольшую опасность для дезактивации катализаторов гидрокрекинга представляют, кроме с зотистых оснований, асфальтены и прежде всего содержащиеся в них металлы, такие, как никель и ванадий. Поэтому гидрокрекинг с ырья, содержащего значительное количество гетеро- и металлор — ганических соединений, вынужденно проводят в две и более ступеней. На первой ступени в основном проходит гидроочистка и ]сеглубокий гидрокрекинг полициклических ароматических угле — 1юдородов (а также деметаллизация). Катализаторы этой ступени идентичны катализаторам гидроочистки. На второй ступени обла — гороженное сырье перерабатывают на катализаторе с высокой 1С.ИСЛОТНОЙ и умеренной гидрирующей активностями. [c.228]

    При каталитическом гидрооблагораживании нефтяных остатков наблюдаются два вида термодеструкции — термический крекинг и гидрокрекинг. Интенсивность протекания этих реакций с одной стороны обусловлена термической стабильностью сырья и с другой гидрокрекирующими функциями активных центров катализатора. Большинство опубликованных результатов по изучению реакций гидрокрекинга при обессеривании нефтяных остатков показьшают, что зти реакции идут лишь в начальной стадии процесса, т. е. на свежем катализаторе. Гидрокрекинг в основном обусловлен кислотными центрами [50], которые ввиду высокой концентрации азотсодержащих соединений, асфальтенов и смол быстро дезактивируются и степень Деструктивного разложения сырья на равновесном катализаторе в основном определяется реакциями термического крекинга, -протекающего в объеме. Длительность работы катализатора, в период которого заметны реад<ции гидрокрекинга обычно не превьпиает 100 ч. [c.58]

    Направление реакции и место разрыва цепи в значительной мере определяются выбором катализатора и условиями процесса. Так, Гензель, Линн и Ипатьев [22], применяя в качестве катализатора гидрокрекинга никель, нанесенный на кизельгур, показали, что при этом происходит отщепление метана, практически исключающее прочие реакции. Например, цетан последовательно превращается в н-С , и т. д. до метана, причем за счет разрыва цепи не на конце ее, а в любом другом [c.174]

    Гидрирующий катализатор должен быть селективным, т. е. он должен ускорять гидрирование би- и полициклических ароматических углеводородов, но быть умеренно активным по отношению к ценным моноциклическим ароматическим углеводородам. В продуктах гидрокрекинга содержание парафиновых углеводородов изостроения выше, чем должно быть по термодинамическому равновесию Это является следствием того, что расщеплению сырья предшествует его глубокая изомеризация на катализаторах гидрокрекинга. Новые катализаторы гидрокрекинга позволили уменьшить удельные капиталовложения при сооружении установок в среднем на 20%. Внесено много технологических и инженерных усовершенствований применяются большие реакторы диаметром до 4,5 м, улучшены их конструкции, удешевлена аппаратура за счет применения биметаллов, упрощены отделения дистилляции и выделения Единичные мощности установок выросли до 12,7 тыс. м в сутки, т. е. —4,5 млн. т в год Было разработано несколько модификаций гидрокрекинга, из которых наиболее распространенными стали процессы изомакс , разработанный фирмами UOP и hevron, и юникрекинг , разработанный фирмами Union Oil п Esso. Суммарная мощность установок гидрокрекинга в настоящее время быстро растет. Если в 1960 г. она составляла только 159 в сутки, то к началу 1970 г. — более 180 тыс. в сутки Очень быстро развиваются и другие процессы гидрогенизации. [c.12]

    Промдвка растворителями закоксованного катализатора гидрокрекингй снижает на 60% содержание кокса и облегчает последующую регенерацию катализатора В промышленных условиях гидроочистки дизельного топлива сравнивались два катализатора. Через 20 месяцев алюмоникельмолибденовый катализатор после регенерации не отличался по активности от свежего, а алюмокобальтмолибденовый — несколько снизил активность (см. [c.81]

    Итак, поскольку алюмосиликаты и цеолиты обладают кислотными участками структуры, их участие в ускорении ионных реакций понять легко. Однако явление взаимосвязи кислотности катализатора с его способностью ускорять ионные реакции в ходе процессов гидрогенизации много сложнее. Нужно принять во внимание, во-первых, что некоторые катализаторы, достаточно хорошо ускоряющие ионные реакции изомеризации и расщепления, не содержат в своем составе алюмосиликатов или цеолитов (например, WS2, МоЗа и др.). Во-вторых, как отмечалось уже на ранних ступенях разработки катализаторов гидрокрекинга активные катализаторы должны обладать не только кислотной, но и гидрирующей активностями, т. е. обе активности должны быть выше определенного критического уровня. Весьма активные алюмосиликаты, использованные в качестве носителей, давали недостаточно активные катализаторы гидрокрекинга (Р1 на А12О3 4- ЗЮз) при малых содержаниях платины с увеличением содержания платины их активность росла, но только до определенного предела. [c.125]

    Катализаторы гидрокрекинга и гидроочистки. Процесс гидроочистки применяется для улучшения качества нефтяных дистиллятов путем их обработки водородом в присутствии катализатора. При этом они освобождаются от соединений серы, азота и кислорода, происходит гидрогенизация олефинов. диолефиновых и ароматических углеводородов. Гидроочистке подвергаются бензин, лигроин, топливо для реактивных двигателей, керосин, мазут, дизельное топливо, смазочные масла, сланцевые масла, угольные смолы, продукты, полученные из горючих сланцев и т. д. [46]. Используются алюмо-кобальт-молибденовый, алюмо-никель-молнбденовый или алюмо-никель-вольфрамовый катализаторы. Перед применением в процессе катализаторы обычно насыщают серой. Процесс гидроочистки проводят при температуре 300—400 °С, давлении 3—4 МПа, объемной скорости подачи сырья 1—5 ч"- и циркуляции водорода до 10 моль на 1 моль углеводорода. Во избежание повышенного коксоотложения на катализаторе сырье, поступающее на гидроочистку, необходимо предохранять от окисления. Катализаторы очень устойчивы к отравлению. Потерявший активность катализатор содержит сульфиды металлов и углистые отложения. Регенерацию проводят при температуре 300—400 °С паровоздушной смесью с начальной концентрацией кислорода 0,5—1% (об.). [c.405]

    Сведения о катализаторах гидрокрекинга весьма ограничены. По патентным данным , наиболее распространены катализаторы гидрокрекинга, содержащие в качестве гидрирующих компонентов металлы VI и VII групп периодической системы элементов, их сульфиды или окислы, осажденные на различных носителях (в зависимости от направленности процесса). Катализаторы содержат также активирующие добавки — другие металлы, серу, галогены. Роль канадого из компонентов катализатора не может считаться до конца ясной, тем более, что несомненно взаимодействие активного агента с добавками и носителем, а также изменение всего катализатора в целом под влиянием среды, компонентов сырья и высокой температуры. [c.319]

    Были сравнены 12 катализаторов гидрокрекинга, содержащих Р1, N1 + , СоО -1-МоОз, М0О3 на носителях с 75—90% 8102 с добавками А12О3 или 2гОа, причем носители обрабатывались хлором. Критерием служил выход бензина из стандартного газойля при наименьшем газообразовании и минимальной температуре. По начальной активности лучшими катализаторами были и N1 + [c.320]

    Роль гидрирующего агента не ограничивается одним ускорением реакций гидрирования. Он влияет также на интенсивность таких типично ионных реакций, как изомеризация и расщепление. Характерно, что не обнаружено корреляции между расщепляющей активностью и числом кислотных центров однако найдена зависимость скорости расщепления т площади, занимаемой металлом (см. рис. 24) Авторы пришли к выводу, что активны лишь кислотные центры катализатора, располагающиеся вблизи металлических кристаллитов, так как только эти центры не закоксовыва-ются в процессе работы. Таким образом, основная роль металлов в катализаторе гидрокрекинга состоит в том, чтобы сохранять кислотные центры активными путем гидрогенизации соединений — предшественников кокса. [c.320]

    Как основное достоинство выше рассмотренных термических процессов переработки ТНО следует отметить меньшие по сравнению с каталитическими процессами капитальные вложения и эксплу атационные затраты. Главный недостаток, сушественно ограничивающий масштабы их использования в нефтепереработке,-ограниченная глубина превращения ТНО и низкие качества дистиллятных продуктов. Значительно более высокие выходы и качество дистиллятных продуктов и газов характерны для процессов каталитического крекинга. Однако для них присущи значительные как капитальные, так и эксплуатационные затраты, связанные с больыгим расходом катализатора. Кроме того, процессы каталитического крекинга приспособлены к переработке лишь сравнительно благоприятного сырья-газойлей и остатков с содержанием тяжелых металлов до 30 мг/кг и коксуемостью ниже 10% (мае.). В отношении глубины переработки ТНО и качества получающихся продуктов более универсальны гидрогениаа-ционные процессы, особенно гидрокрекинг. Но гидрокрекинг требует проведения процесса при чрезмерно высоких давлениях и повышенных температурах и, следовательно, наибольших капитальных и эксплуатационных затратах. Поэтому в последние годы наблюдается тенденция к разработке процессов промежуточного типа между термич с-ким крекингом и каталитическим гидрокрекингом, так называемых гидротермических процессов. Они проводятся в среде водорода, но без применения катализаторов гидрокрекинга. Очевидно, что гидротермические процессы будут несколько ограничены глубиной гидропереработки, но лишены ограничений в отношении содержания металлов в ТНО. Для них характерны средние между термическим крекингом и гидрокрекингом показатели качества продуктов и капитальных и эксплуатационных затрат. Аналоги современных гидротермических процессов использовались еще перед второй мировой войной для ожижения углей, при этом содержащиеся в них металлы частично выполняли роль катализаторов гидрокрекинга. К гидротермическим процессам можно отнести гидровисбрекииг, гидропиролиз, дина-крекинг и донорно-сольвентный крекинг. [c.79]

    Процесс гидрокрекинга вакуумного дистиллята служит для получения реактивных и дазельных топлив, компонента высокоиндексных масел и сырья для каталитического крекинга. Из-за низкой октановой характеристики в процессе стараются получать как можно меньше бензина. Направление процесса, выход и качество образующихся продуктов во многом определяются качеством катализатора и исходного сьфья, условиями проведения процесса. Катализаторы гидрокрекинга являются полифункциональными системами и наряду с реакциями расщепления сырья должны обеспечить гидрогенолиз серо-, азот- и кислородсодержащих соединений и гидрирование полициклических, ароматических углеводородов. Для гидрокрекинга вакуумного дистиллята применяют катализаторы двух типов аморфные (оксикремнеземные или металлосиликатные) и цеолитсодержащие. Как правило, эти катализаторы содержат расщепляющий и гидрирующий компоненты. Их эффективность определяется как свойствами каждого компонента, так и вкладом в суммарную гидроконверсию [c.179]

    Известно, что расщепляющая активность катализаторов гидрокрекинга определяется числом и силой кислотных центров. Результирующая эффективность, как отмечалось выше, определяется сочетанием гидрирующей и расщепляющей функций. Носителями кислотных свойств цеолитсодержащих катализаторов в основном являются В-центры, число и сила которых зависят как от количества цеолита в катализаторе, так и от способа его предварительной обработки. Аморфные алюмосиликаты обладгдат как В-, так и L-центрами. Катализаторы, содержащие металлосиликаты в качестве расщепляющего компонента, содержат в основном L-центры (табл. 7.6). [c.181]

    В институте нефтехимического синтеза АН СССР под руководством Я.Р.Кацобашвили в пилотном масштабе разработан проц сс гидрокрекинга нефтяных остатков под невысоким давлением (до 3 МПа) с циркулирующим потоком микросферического непрерывно регенерирующего катализатора. Процесс основан на поддержании активности катализатора не за счет применения высокого давления, а за счет непрерывной регенерации катализатора. Гидрокрекинг сырья и регенерация закоксованного катализатора осуществляются соответственно в реакторе и регенераторе с кипящим слоем микросферичес- [c.201]

    Ввиду таких серьезных преимуществ при применении гидрокрекинга для получения легких нефтепродуктов нужно использовать катализаторы с высокой кислотной активностью. Такие катализаторы очень сильно отравляются азотистыми основаниями в результате блокирования кислотных активных центров, поэтому применять их можно для переработки дистиллятных продуктов с низким содержанием азота. При значительном содержании в сырье азотистых соединений его нужно предварительно очищать от азота и гидрокрекинг проводить в две ступени. В первой ступени в основном проходят гидроочистка и неглубокий гидрокрекинг, при котором гидрируются полициклические ароматические углеводороды. Для этого используют устойчивые к действию азота и серы катализаторы гидроочистки. Во второй ступени гидроочищенное и отчасти гидрокрекированное сырье перерабатывают на катализаторе с высокой кислотной активностью. Из опубликованных данных известно применение в качестве катализаторов гидрокрекинга смеси сульфидов никеля и вольфрама (6% N1 и 19% У), нанесенных на алюмосиликат, палладия (0,5%) на цеолите типа У, платины на цеолите. Катализаторы на основе цеолитов обладают повышенной стойкостью к действию соединений азота и весьма перспективны. [c.298]

    В третьем реакторе, несмотря на понижение температуры ио длине слоя катализатора, гидрокрекинг циклоалканов и алканов представлен правой яастью температурной кривой. Гидрокрекинг происходит в наибольшей степени в четвертом реакторе. [c.279]

    Прямогонные нефтяные фракции характеризуются преобладанием парафиновых углеводородов, гидрокрекинг которых ведет главным образом к образованию более легких парафиновых углеводородов. Соотношение парафиновых углеводородов изо- и нормального строения в продуктах реакции, получаемых на промышленных катализаторах гидрокрекинга, значительно превышает равновесное. Этот факт объясняется, по-вндимому, особенностями механизма реакций гидрокрекинга парафиновых углеводородов. Реакции расщепления нормальных парафиновых углеводородов на промышленных кислотных катализаторах гидрокрекинга носят ионный характер, предполагающий начальное образование вторичного иона карбония. Вторичный ион карбония легко изомеризуется в более стабильный третичный, который крекируется по р-связн С—С по отношению к карбионноыу атому углерода, образуя олефин и новый третичный ион карбония. Образующийся олефин, в свою очередь, изомеризуется до изоолефина, который тотчас же насыщается водородом и уже не может вступать в дальнейшие обратные реакции изомеризации в сторону достижения равновесия. [c.135]

    Для достижения высокой эффективности процесса гидрокрекинга катализаторы должны обладать сильными крекирующими свойствами, которые обеспечивали бы глубокое превращение даже трудноконвертнруемых компонентов сырья (например, конденсированные полициклические структуры). Наряду с этим важнейшее значение имеет и изомеризующая функция катализатора, которая должна обеспечивать высокое соотношение парафинов изо- и нормального строения в продуктах гидрокрекинга. В то же время катализатор гидрокрекинга должен иметь и определенную гидрирующую активность. [c.138]


Смотреть страницы где упоминается термин Катализаторы гидрокрекинга: [c.244]    [c.180]   
Смотреть главы в:

Катализаторы на основе молибдена и вольфрама для процессов гидропереработки нефтяного сырья -> Катализаторы гидрокрекинга

Получение реактивных топлив с применением гидрогенизационных процессов -> Катализаторы гидрокрекинга

Промышленные катализаторы гидрогенизационных процессов нефтепереработки -> Катализаторы гидрокрекинга

Гидрокрекинг дистиллятов и мазутов -> Катализаторы гидрокрекинга

Катализ в кипящем слое Издание 2 -> Катализаторы гидрокрекинга

Высоко кремнеземные цеолиты и их применение в нефтепереработке и нефтехимии -> Катализаторы гидрокрекинга

Каталитические процессы в нефтепереработке Издание 2 -> Катализаторы гидрокрекинга


Крекинг нефтяного сырья и переработка углеводородных газов Изд.3 (1980) -- [ c.28 , c.255 , c.259 ]

Новейшие достижения нефтехимии и нефтепереработки том 7-8 (1968) -- [ c.252 ]

Промышленная органическая химия на предприятиях Республики Башкортостан 2004 (2004) -- [ c.26 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние азотистых оснований на активность никельмолибденовых даолитсодерхащих катализаторов гидрокрекинга

Влияние температуры и давления на стабильность катализатора гидрокрекинга

Гидрокрекинг

Гидрокрекинг в кипящем слое катализатора

Гидрокрекинг на гетерогенном катализаторе

Гидрокрекинг на полиметаллических катализаторах

Гидрокрекинг на циркулирующем катализаторе

Гидрокрекинг над стационарными катализаторами

Гидрокрекинг нефтяного сырья катализаторы

Гидрокрекинг нефтяного сырья на цеолитсодержащих катализаторах

Гидрокрекинг низкого давления над движущимися катализаторами

Гидрокрекинг с суспендированными катализаторами

Катализаторы гидрогенизации п гидрокрекинга

Катализаторы гидрокрекинга вакуумного газойля

Катализаторы гидрокрекинга и гидродеалкилирования

Катализаторы процесса гидрокрекинга

Катализаторы селективного гидрокрекинга

Кацобашвили, Г. М. Михеев. Влияние химсостава и пористой структуры катализаторов гидрокрекинга на их активность

Моделирование процесса гидрокрекинга Н-гексана на алюмомолибденовом катализаторе (с использованием полного факторного эксперимента)

Нанесенные катализаторы прямого гидрокрекинга угля

Особенность химизма и механизма реакций гидрокрекинга Катализаторы процесса

Промышленное применение цеолите одержащих катализаторов гидрокрекинга

Промышленные системы гидрокрекинга с подвижным катализатором

Промышленные системы гидрокрекинга со стационарным катализатором

Установка гидрокрекинга в стационарном слое катализатора (Б. П. Туманян)

Установка гидрокрекинга с псевдоожиженным слоем катализатора (Ал. А. Гуреев)



© 2025 chem21.info Реклама на сайте