Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вязкость, перепад

    Исходные данные для расчета следующие производительность по исходной суспензии = 267 т/ч начальная массовая концентрация твердой фазы = 2,6 % конечная концентрация Xf = 16 % плотность твердой фазы = 1350 кг/м плотность жидкой фазы = 1000 кг/м динамическая вязкость жидкости ц. = 1,08 10" Па-с перепад давления на фильтре Ар = = 7-10 Па влажность осадка W = 56 % удельное сопротивление осадка = 32-10 м/кг сопротивление фильтрующей перегородки Гф. = 14-10 1/м вспомогательное время, затрачиваемое на сброс осадка, t = 45 с толщина осадка /г с = 16 мм. [c.101]


    Исходные данные для расчета следующие поверхность фильтрования Рф = 50 м предельный перепад давления при фильтровании Ард = 2-10 Па высота слоя осадка кос = 12 мм съем осадка смывом струей жидкости коэффициент удельного сопротивления осадка согласно (4.13) = 1,13-109 (Др) . сопротивление фильтрующей перегородки Гф, = 12-10 1/м влажность осадка после фильтрования = 35 % динамическая вязкость фильтрата [1= 1,36-10- Па-с массовая концентрация суспензии х,п = 4 % , плотность жидкой фазы = 1250 кг/м , плотность твердой фазы = 2430 кг/м расход промывной жидкости Упр. ж = 1,5-10 М /КГ вязкость промывной жидкости 1пр = = 1,02-10- Па-с время сушки осадка = 80 с, вспомогательное время Тд = 1860 с. [c.105]

    Жидкости, подвергаемые большим механическим воздействиям, в той или иной мере теряют свои первоначальные свойства. Вязкость минеральных жидкостей при длительном действии высоких давлений, и особенно дросселирования с большим перепадом давлений, значительно (до 50% первоначального значения) понижается. Одновременно может ухудшаться смазывающая способность жидкости, о происходит в результате механической деструкции молекул жидкости крупные молекулы жидкости, особенно вязкостных присадок, при длительном механическом воздействии разрушаются на более мелкие части. [c.213]

    Под характеристикой турбины турбобура понимается взаимосвязь между основными техническими показателями. Обычно она представлена графически кривыми зависимости момента М, перепада давления Др . мощности и к. п. д. л от частоты вращения вала п при постоянном значении расхода Q жидкости с определенными свойствами (плотность, вязкость и др.) (рис. 6.1). [c.69]

    Сложная и носящая статистический характер геометрическая структура зернистого слоя не позволяет точно определить положение точек, в которых должно выполняться граничное условие (II. 1). Это обстоятельство, а также нелинейность основных уравнений гидродинамики, не позволяет получить сколько-нибудь точные решения для скоростей и перепада давлений в зернистом слое. При малых скоростях течения в условиях преобладания сил вязкости можно пренебречь квадратичными членами и уравнения гидродинамики становятся линейными, что облегчает получение точных или приближенных решений при сильной идеализации геометрической структуры слоя (см. ниже). В общем же случае для анализа течения в зернистом слое приходится обращаться к эксперименту с использованием при его обработке методов теории подобия [4]. [c.21]


    Вследствие этого присутствие в жидкости дисперсной фазы внешне выражается в том, что объемная скорость истечения такой жидкости (расход), например, в капиллярном канале при ламинарном режиме потока перестает быть пропорциональной действующему перепаду давления, в результате чего создается эффект зависимости вязкости такой жидкости, точнее кажущейся ее вязкости, от величины действующего на жидкость усилия или величины перепада давления. [c.8]

    Наконец, из уравнений (27) и (28) видно, что минимальное значение ВЭТТ не зависит от Dg, т. е. от природы газа-носителя, пока член, учитывающий сопротивление массопередаче в жидкой фазе, пренебрежимо мал однако соответствующее значение скорости пропорционально Dg. Это вторая причина того, почему водород — лучший газ-носитель в газовой хроматографии. Он обеспечивает те же значения эффективности, что и другие газы, но при намного большей скорости газа-носителя. Так как он имеет, кроме того, наименьшую вязкость, перепад давления является малым. В соответствии с этим при использовании водорода анализы осуществляются намного быстрее, чем с любым др тим газом-носителем, включая гелий. [c.134]

    Вязкость смазочного материала определяет возможность перекачивания и подачи масла (смазки) к узлу (зоне) трения. Зная вязкость, несложно рассчитать давление, обеспечивающее необходимый расход масла. Исходя из закона Ньютона, Пуазейлем было выведено уравнение, дающее зависимость между перепадом давления АР и расходом Q для цилиндрической трубки  [c.277]

    Капиллярный + Вязкость Перепад давлений на капилляре при неизменном расходе или времени истечения определенного объема анализируемой среды [c.44]

    При получении экструзией прозрачных листов из термопластов особую проблему представляет однородность используемого материала по вязкости. Перепады вязкости, непостоянство ее во времени ведет к волнистости листа, которая существенно ухудшает качество изображения предмета при рассматривании через экструдированный лист. [c.83]

    Интенсивность действия сил внутреннего трения (вязкости)в реальных жидкостях зависит от степени неоднородности поля скоростей в потоке. Эта же неоднородность вызывает в жидкости конвективные ускорения и. следовательно, инерционные эффекты. В зависимости от того, превалирует ли вязкое воздействие или инерционное, можно, в порядке упрощения, говорить о двух предельных случаях движения медленном , когда пренебрегают конвективными инерционными силами и учитывают лишь действие сил вязкости, перепада давления и внешних объемных сил, и движений идеальной жидкости, не обладающей вязкостью. Такой подход широко использовался ранее при решений многих практических задач, но в настоящее время, в связи с появлением интереса к изучению более тонких характеристик движения, таких, как трение, теплоотдача и т. п., гидродинамика уже не может довольствоваться столь приближенными подходами и требует более детального изучения происходящих в жидкостях явлений. [c.12]

    Примечание. Подводя итог всему сказанному, заметим следующее радиус скважины и величины, характеризующие размеры пластовой водонапорной системы, мало влияют на результаты подсчетов по нашим формулам. Мощность пласта в наши формулы не входит, ибо дебит, добычу и т. д. мы условились относить к единице мощности пласта. Имея перед собой наши таблицы и зная мощность пласта, можно легко по формулам типа (82) подсчитать дебит скважин и суммарную добычу со всей мощности пласта. Остальные физико-геологические константы и параметры-проницаемость, пористость, вязкость, перепад давления — входят в наши формулы линейно, в виде множителей (хотя в некоторые формулы вязкость нефти входит с помощью более сложных зависимостей). Мы подчеркнули, что большинство из этих факторов известны нам ориентировочно, или мы выбирали 54 [c.54]

    Результат большинства опубликованных "работ — определение константы Козени — Кармана К в уравнении (11.32). Эта константа связана с коэффициентом сопротивления /э в области преобладания сил вязкости соотношением (11.35). Технически определение К сводится к исследованию зависимости между перепадом давления Др на некотором стабилизированном участке высоты слоя зерен I и удельным расходом подаваемой жидкости (газа)У/5 = ы. Эту зависимость стараются определить в возможно более широком интервале изменения скорости потока. Полученные результаты, усредненные в области прямой пропорциональности Др и и, позволяют определить величину К. Наиболее достоверные результаты ее определения для зернистых слоев различной структуры приводятся ниже. [c.54]

    Точное решение задачи о переносе теплоты и массы к слою шаров представляет большие трудности. Авторы опубликованных работ обычно исходят из решения для одиночного шара, вводя в него коррективы, связанные с обтеканием шара в ансамбле соседних, шаров. В разделе П.2 была рассмотрена задача обтекания шара в слое с расчетом перепада давления при течении жидкости в режиме преобладания сил вязкости и дано описание модели, предложенной Хаппелем [60], в виде шара со сферической оболочкой, двигающегося в жидкости. В работе [61] эта модель применена к решению задачи переноса тепла и массы в области преобладания сил вязкости. При обтекании шара в частично заполненном объеме (е < 1) отношение диаметра шара к диаметру эквивалентной сферы имеет вид  [c.141]


    Аномалия вязкости может благоприятно влиять на уменьшение сопротивлений при работе механизмов. В результате снижения вязкости масла (смазки) с ростом скорости его деформирования увеличение энергетических затрат на деформирование замедляется. Иными словами, чтобы вдвое увеличить объем перекачиваемой по трубопроводу ньютоновской жидкости, необходимо вдвое увеличить перепад давления (при ламинарном течении). Для аномально вязкой жидкости, в частности для загущенных масел и пластичных смазок, удвоение перепада давления приведет не к двукратному, а к существенно большему увеличению расхода. [c.277]

    Когда скорость адсорбции определяется внутренней диффузией, она обратно пропорциональна квадрату диаметра частицы. При этом уменьшение размера частицы существенно увеличивает скорость переноса, однако для неподвижного адсорбента соответственно растет и требуемый перепад давления. Если величина перепада давления имеет существенное значение, то следует уравновесить влияние этих факторов, исходя из экономической целесообразности. Так как температура оказывает сильное влияние на скорость переноса, а также на величину перепада давления (в результате изменения вязкости), она может быть важным фактором при выборе оптимального размера частиц. [c.160]

    Исходные данные для расчета следующие поверхность фильтрования == 80 м , толщина набираемого осадка равна половине толщины плиты = 22,5 мм, максимально допустимый перепад давления на фильтре Дрд = 4-10 Па среднее удельное сопротивление осадка при максимально допустимом перепаде давления 3 = 5-10 м/кг сопротивление фильтрующей перегородки Гф. п = 11 - 10 1/м динамическая вязкость фильтрата (А = 2 -10 Па-с вязкость промывной жидкости (Хпр = 1- О" Па-с массовая концентрация твердой фазы в суспензии = 4,6 %  [c.102]

    Здесь — объем межвиткового пространства на длине шага нарезки, м Кр, К — коэффициенты геометрической формы канала червяка и кольцевого канала зазора между гребнем витка и цилиндром (12.17), м Цк, .з — эффективные вязкости расплава в канале червяка и в зазоре, Па-с п — частота вращения червяка, с" Ар — перепад давления в зоне дозирования, определяемый величиной сопротивления формующей головки, Па. [c.344]

Рис. 4.31. Дымность продуктов сгорания Д топлив в зависимости от перепада давления на форсунке ДЯ при кинематической вязкости топлив г = = 1,45 мм /с (по данным Рис. 4.31. Дымность <a href="/info/17856">продуктов сгорания</a> Д топлив в зависимости от <a href="/info/13685">перепада давления</a> на форсунке ДЯ при <a href="/info/15193">кинематической вязкости</a> топлив г = = 1,45 мм /с (по данным
Рис. 4.35. Дымность продуктов сгорания Д в зависимости от температуры конца кипения топлива / к при кинематической вязкости у=1,45 мм /с и при различном перепаде давления топлива на форсунке Рис. 4.35. Дымность <a href="/info/17856">продуктов сгорания</a> Д в зависимости от температуры конца <a href="/info/730594">кипения топлива</a> / к при <a href="/info/15193">кинематической вязкости</a> у=1,45 мм /с и при различном <a href="/info/13685">перепаде давления</a> топлива на форсунке
    Величина Х ,/ характеризует движущую силу переноса импульса и определяется комбинацией перепадов скорости вереде. Силы трения Р,-,/ находятся как линейные функции перепадов скорости по известным коэффициентам вязкости [5]. [c.241]

    Общая предельная относительная погрешность измерений на описанном стенде не превышает 10%. Больше половины этой величины составляют погрешность от измерения перепада давления на фильтрующей перегородке и погрешность от колебания вязкости дизельного топлива. Последняя погрешность, которая возникает от невозможности поддержать неизменной во время опыта [c.75]

    При течении среды происходит тиксотроппое разрушение (изменение) ее структуры. Это особенно существенно для конц. дисперсных систем, у к-рых при постоянной скорости сдвига стационарное состояние иногда достигается только после огромной деформации (большие длительности деформирования). Исключение этого эффекта, как и исключение входовых эффектов, в принципе производится применением капилляров достаточно большой длины и использованием для расчета вязкости перепада давления на тех участках, где градиент давления по длине канала м. б. принят постоянным. Исходя только из опытов с капиллярами разной длины, эффекты входовых потерь и тиксотропного разрушения структуры системы различить практи 1ески невозможно. Предварительное деформирование системы на высоких скоростях сдвига может существенно облегчить достижение стационарного состояния при ее течении в капилляре. [c.234]

    К внутренним силам относятся молекулярные силы и турбулентность потока. В струе вытекающей жидкости возникают турбулентные пульсации, интенсивность которых зависит от ее плотности, вязкости, перепада давления, а также от конструкции распылителя. Увеличение скорости истечения опосогбствует увеличению интенсивности турбулентных пульсаций, что, в свою очередь, улучшает качество распыления. [c.7]

    Отсюда следует, что при малых Не, так же как и для упомянутых в предыдущем разделе задач, для которых были получены аналитические решения (например, течение внутри труб, обтекание шара), перепад давления на единицу длины в зернистом слое прямо пропорш онален средней скорости по- тока й а вязкости ц текущей жидкости или газа, обратно пр -пордионален квадрату определяющего размера. частиц слоя [c.33]

    Для использования уравнений типа (П. 61) необходимо знать основные параметры зернистого слоя — порозность е и удельную поверхность а = ао(1 — е).. Величину ао для частиц нерегулярной формы определяют по перепаду давления в области течения с преобладанием сил вязкости по уравнению (II. 55). Пе- реходя к большим значениям Rea, можно, далее, определить и константу /Си в (11.61). Для этого, подставив значения (II. 59) [c.65]

    При выводе указанного уравнения предполагалось, что коэффициенты пористости и проницаемости не изменяются с давлением, i. e. пласт недеформируем, вязкость газа также не зависит от давления, гяз совершенный. Принимается также, что фильтрация газа в пласте происходит по изотермическому закону, т.е. температура газа и пласта остается неизменной по времени. Впоследствии один из учеников Л.С. Лейбензона-Б. Б. Лапук в работах, посвященных теоретическим основам разработки месторождений природных газов, показал, что неустановившуюся фильтрацию газа можно приближенно рассматривать как изотермическую, так как изменения температуры газа, возникающие при изменении давления, в значительной мере компенсируются теплообменом со скелетом пористой среды, поверхность контакта газа с которой огромна. Однако при рассмотрении фильтрации газа в призабойной зоне неизотермичность процесса фильтрации сказывается существенно вследствие локализации основного перепада давления вблизи стенки скважины. Кстати, на этом эффекте основано использование глубинных термограмм действующих скважин для уточнения профиля притока газа по толщине пласта (глубинная дебитометрия). При рассмотрении процесса фильтрации в пласте в целом этими локальными эффектами допустимо пренебрегать. [c.181]

    Исследование процесса образования пузырей и капель при истечении жидкостей или газов из отверстий и сопел имеет исключительно важное значение для разработки научно-обоснованных методов расчета колонных аппаратов, в которых межфазная поверхность создается путем диспергирования жидкости или газа. Механизм образования пузырей и капель чрезвычайно спожен и определяется очень большим числом параметров. Параметры, влияющие на процесс образования пузырей, можно подразделить на конструктивные, параметры, связанные со свойствами газов и жидкостей, и режимные параметры. К первому классу относятся диаметр, форма, ориентация и конструкция сопла, а также материал, из которого он изготовлен. Кроме того, чрезвьиайно важным конструктивным параметром для образования пузырей, является объем газовой камеры, из которой происходит йстечение газа в жидкость. К параметрам, связанным со свойствами выбранной системы, можно отнести поверхностное натяжение на границе раздела фаз, плотность и вязкость жидкости и газа, угол смачивания и скорость звука в газе. И, наконец, режимные параметры включают объемный расход диспергируемой фазы, величину и направление скорости сплошной фазы, высоту уровня жидкости в колонне, перепад давления в сопле и температуру. Не все названные параметры равноценны и одинаково важны для процессов образования капель и пузырей, однако большинство оказывает существенное влияние на величину отрывного диаметра и частоту образования диспергируемых частиц. [c.48]

    В этом выражении коэффициент С равен АР141 1, где АР — перепад давления по длине трубы I, а р —динамическая вязкость жидкости. Предполагается, что химическая реакция не влияет на плотность и вязкость жидкости. Отсюда следует, что время прохода ( элемента с радиусом г определяется из выражения [c.67]

    Мсходные данные для расчета следующие перепад давления при фильтровании и промывке А/ 64-10 высота слоя осадка 9 мм, влажность отфил11трованного осадка W 72 % удельное сопротивление осадка / 27-10 м/кг сопротивление фильтрующей перегородки Гф, - 42.10 1/м плотность твердой фазы р.,- 2540 кг/м" плотность жидкой фазы = 1080 кг/м динамическая вязкость фильтрата i - 1,05 < 10 Па-с массовая концентрация твердой фазы х, 10,6 %  [c.116]

    Сообщений о работе установок алкилирования на промотированной серной кислоте очень мало. В одном из патентО В упоминается, что высокая технико-экономиче-ская эффективность использования промотора Rex-121 была проверена в США на шести промышленных установках. В другом сообщении [69] приводятся следующие результаты применения Rex-121 на одном из заводов фи мы Great Northern Oil в Пайн Бенде (М ннисота). Было сделано два пробега с использованием промотора, первый продолжительностью три недели, второй — более двух недель (точных данных нет). Количество добавляемого промотора не указано. Отмечается, что добавка его с-блегчает эмульгирование вследствие снижения вязкости эмульсии перепад давления на каждом реакторе понизился на 0,04 ат, сила тога на электромоторе контактора уменьшилась на 0,5 а. [c.86]

    Скорость фильтрации оказалась линейной функцией от перепада давления и вязкости топлива. Это показывает, что для тех скоростей фильтрации и вязкостей, которые могут быть в условиях эксплуатации дизелей, движение дизельного топлива через фильтрук>щую перегородку ламинарное. [c.25]

    В табл. 3 и 4 представлены значения удельных сопротивлений фильтрующих материалов (при размерности перепада давления в мм вод. ст., скорости фильтрации в см1час, динамической вязкости в сантипуазах, линей-ных размеров в см). Здесь приводятся численные значения удельных сопротивлений войлоков в несжатом совтоя-нии, которые обозначены через Го. Для войлоков в сжатом состоянии, как они чаще работают, относительное [c.25]

    Для найденного состава иаровой и жидкой фаз рассчитывают энтальпию, вязкость, плотность, линейную скорость потока и протяженность каждого участка, необходимую для передачи соответствующего количества теила, и фактический перепад давления. Если полученные значения продолжительности движения потока по участкам и перепады давления пе совпадут с принятыми в начале расчета данными, необходимо внести поправки в начальные условия и расчет повторить. [c.170]

    Выполняют роль рабочего тепа в гидросистемах навесного оборудования разных машин, поэтому их часто называют "рабочие жидкости". Работа масел характеризуется значительными перепадами температуры от —40 при пуске зимой до 90 °С при установившемся режиме), высокими давлениями (до 40 МПа) и скоростью скольжения (до 20 м/с). Гидравлические масла должны иметь температуру застывания на 15-20 с ниже той, при которой осуществляется пуск, и температуру испарения на 20—30 °С выше возможной рабочей. Вязкость должна быть невысокой в широком диапазоне температуры для быстрого фабатыва-ния механизма, но достаточна для обеспечения плавного хода, снижения потерь через уплотнения, предотвращения износа трущихся деталей. [c.26]

    При больших скоростях движения практически весь перепад скорости сосредоточен в тонком гидродинамическом пограничном слое толщиной б 01 а перепад концентрации — в диффузионном пограничном слое толщиной б. Величина б будет различной на разных участках поверхности, являющейся неравнодоступной в диффузионном отношении. То же относится и к толщине гидродинамического пограничного слоя бо- Отношение бо/б тем выше, чем больше отношение кинематической вязкости вещества v к коэффициенту молекулярной диффузии В жидкостях, где v/Z) > 1, диффузионный пограничный слой гораздо тоньше гидродинамического. В этом случае при решении уравнения (III.13) можно воспользоваться достаточно простыми выражениями для скорости потока вблизи твердой поверхности, что позволяет найти аналитическое решение уравнения (III.13) при протекании быстрой гетерогенной реакции или реакции первого порядка на поверхности частиц простой геометрической формы (пластина или шар) [12, 13]. В газах толщины диффузионного и гидродинамического пограничных слоев — величины одного порядка и [c.103]

    Режим IV, когда коэффициенты вихревой вязкости и вихревой диффузии достигают максимального значения, соответствует автомодельному режиму, или режиму развитой турбулентности. В этом режиме перепад давления в потоке определяется квадратичным законом и сопротивлеьп-1е пе зависит от молекулярной вязкости. Однако в процессе массопередачи возрастание коэффициента вихревой вязкости приводит к интенсивному продольному перемешиванию и снижает продольный градиент концентраций, поэтому коэффициент массопередачи и число Л д не могут возрастать до бесконечности (пунктирная линия). [c.203]


Смотреть страницы где упоминается термин Вязкость, перепад: [c.188]    [c.340]    [c.67]    [c.360]    [c.30]    [c.286]    [c.73]    [c.86]    [c.88]    [c.134]   
Справочник резинщика (1971) -- [ c.564 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние зависимости вязкости газа-носителя от давления на поправочный коэффициент на перепад давления в колонне



© 2025 chem21.info Реклама на сайте