Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фенантрен реакции

    Одним из наиболее полезных применений системы металл -аммиак для целей органического синтеза является восстановление ароматических колец. Растворы металлов в жидком аммиаке в присутствии спирта в качестве донора протона или без него выступают как достаточно мощные агенты для того, чтобы восстановить ароматическое кольцо, и одновременно достаточно специфичные, чтобы восстановление провести лишь частично до дигидробензолов (циклогексадиенов). Этот тип реакции известен как восстановление по Берчу, Легкость восстановления в первом приближении коррелирует с восстановительным потенциалом соединения и уменьшается в порядке > антрацен > фенантрен > > нафталин > дифенил > бензол. Сам бензол не удается восстановить щелочным металлом в жидком аммиаке, и его восстановление может быть успешно проведено до 1,4-дигидробензола лишь в присутствии более эффективного донора протонов, такого как этанол  [c.171]


    Тенденции, отмеченные у нафталина, еще в большей мере проявляются у фенантрена и особенно у антрацена. Эффект стабилизации у фенантрена составляет 385,10 кДж/мюль, а у антрацена 351,69 кДж/моль. В случае присоединения двух атомов водорода к антрацену понижение энергии сопряжения составляет всего 50,2 кДж/моль. Антрацен и фенантрен более реакционноспособны, чем нафталин и, тем более, чем бензол. В значительно большей степени антрацен и фенантрен способны к реакциям присоединения, идущим, как правило, по лезо-углеродным атомам 9 и 10. Среднее кольцо у антрацена отличается особой ненасыщенностью. Так, при взаимодействии с диенофилами, например с малеиновым ангидридом, образуется сравнительно стабильный продукт диенового синтеза  [c.21]

    Фенантрен имеет большую энергию резонанса (414,5 кДж/моль), чем антрацен (360 кДж/моль), т. е. он более ароматичен и, следовательно, менее реакционноспособен. Гидрирование, окисление и реакции с электрофильными реагентами направлены в первую очередь в положения 9, 10, хотя они менее активны, чем в молекуле антрацена [c.280]

    Алкилированные ароматические углеводороды. Термическое разложение алкилированных ароматических углеводородов сопровождается значительным числом реакций, на которые оказывают воздействие температура, давление, катализаторы, присутствие водорода или других ароматических углеводородов, действующих как акцепторы водорода, а также олефинов или других продуктов разложения. Так известно, что при пиролизе толуола получаются бензол, дибензил, стильбен, дито-лил, фенилтолил, фенилтолилметан, дитолилметан, дифенил, стирол, нафталин, антрацен и фенантрен. Наличие более длинных боковых цепей или нескольких заместителей увеличивает число возможных реакций однако, несмотря на сложность получаемых продуктов, совершенно ясно обнаруживается одно свойство ароматических кольцевых систем, сохраняющих свою идентичность на протяжении большого количества пиролитических реакций, а, именно, их стабильность тем не менее имеется одна реакция, которая приводит к разрушению ароматических структур — пиролиз в присутствии водорода, особенно в контакте с катализатором, который может служить гидрирующим агентом. В этом случае ароматические кольца сперва гидрируются, а затем расщепляются. Нагревание алкилароматических углеводородов с водородом, особенно в присутствии катализаторов, часто приводит к образованию незамещенных ароматических углеводородов, которые могут подвергаться затем гидрогенолизу. [c.103]

    Другим способом синтеза бифункциональных металлорганических катализаторов является взаимодействие щелочных металлов с некоторыми ароматическими углеводородами (нафталин, антрацен, фенантрен, дифенил, терфенил и т.- п.), а также с некоторыми ароматическими производными этилена (стильбен, 1,1-дифенил-этилен, трифенилэтилен и т. д.). Реакция протекает обычно в полярных растворителях через стадию образования ион-радикала [3, с. 365]  [c.413]


    Реакция замещения диазогруппы на арил находит успешное применение в открытом Пшорром (1896) общем методе синтеза производных фенантрена. При конденсации о-нитробензальдегида с фенилацета-том натрия (или его производными) и уксусным ангидридом по Перкину образуется главным образом г с-а-фенил-о-нитрокоричная кислота. Последнюю превращают в амин, а затем в диазониевую соль, которая под каталитическим действием порошкообразной меди отщепляет азот и хлористый водород и с замыканием кольца образует фенантрен-9-карбоновую кислоту. [c.264]

    В молекуле ангулярно построенного и более устойчивого фенантрена также нарушена выравненность связей увеличен порядок связей 1—2, 3—4, 5—6 и 7—8, но особенно сильно — связи 9—10, которая по межатомным расстояниям приближается к двойной. Поэтому все реакции присоединения к фенантрену идут [c.29]

    Окислением ароматических колец могут быть получены фенолы, хиноны и карбоновые кислоты, весьма важные для синтеза промежуточных продуктов, красителей и полимеров. Окисление ароматических колец, как правило, идет значительно труднее, чем окислительные реакции в боковых цепях. Из ароматических углеводородов бензол, в котором электронная плотность полностью выравнена, окисляется труднее всего. Нафталин, в котором эта выравненность нарушена, окисляется значительно легче. Еще легче по тем же причинам идут эти процессы с антраценом и фенантреном. Во всех случаях электронодонорные заместители в кольце облегчают течение реакций окисления. [c.323]

    Обычно циклоприсоединение ССЬ по двойной связи, входящей в ароматическую систему, не идет такие реакции возможны только при условии, что двойная связь сохраняет некоторую долю олефинового характера (например, в фенантрене) или имеет высокую электронную плотность и частично локализована (например, в 2-метоксинафталине). В больщинстве случаев выходы низкие или даже очень низкие. Необычные превращения алкилированных ароматических углеводородов приводят к образованию смесей спирононатриенов [718—720], как показано на примере 2-метилнафталина  [c.320]

    При изменении глубины превращения додекана от 33 до 68% константа скорости крекинга оставалась постоянной в пределах возможных ошибок опыта. Независимость константы скоро сти крекинга под давлением от глубины превращения до 50% и более показано также ниже для нефтяной фракции 270—300° С, а также для некоторых ароматических углеводородов (нафталин, фенантрен). В литературе нет данных, показывающих отклонение реакции крекинга высших парафинов под давлением от 1-го кинетического порядка. [c.98]

    Для ароматических соединений характерна их большая склонность к реакциям сульфирования. Особенно легко сульфируются антрацен и фенантрен, труднее—нафталин бензол относительно более устойчив к действию сульфирующих агентов. [c.243]

    Фенантрен также избирательно окисляется за счет положений 9 и 10, образуя практически важный фенантренхинон. Однако эту реакцию необходимо вести с осторожностью, так как фенантренхинон легко окисляется далее до дифеновой кислоты  [c.328]

    Сульфирование таких полициклических систем, как антрацен или фенантрен, идет настолько легко, что нолисульфокислоты образуются даже при мягких условиях, ири которых некоторое количество углеводорода остается непросульфированным [106]. По этой причине такие реакции сульфирования были исследованы сравнительно мало, а в имеющихся данных встречаются неоиределенность и противоречия. Сульфо-производные антрацена обычно получаются из антрахинона, который дает меньше побочных продуктов, чем углеводород. [c.524]

    При разукрупнении молекулярной структуры [223] происходит внутримолекулярная перегруппировка, выражающаяся прежде всего в изомеризации молекул. Это в наибольшей степени относится к высокореакционным молекулам, способным переходить в новое и более выгодное энергетическое состояние с наименьшим запасом свободной энергии, т. е. в твердые карбоиды. Чем больше приток энергии высокого потенциала извне, т. е. чем выше температура нагрева паров в пирозмеевике, тем более благоприятные создаются условия для протекания цепных реакций в реакторе, для самопроизвольного выделения избыточной свободной энергии (повышение температуры) и для образования карбоидов (нерастворимых в бензоле). При переходе от мягкого режима пиролиза к жесткому количество карбоидов увеличилось примерно в 12 раз, асфальтенов — почти в два раза и резко уменьшился выход масляной фракции (см. табл. 8). В маслах возросло количество фенантренов, пиренов и хризенов и уменьшилось количество антраценов. [c.30]

    Изменение состава алкилата во времени представлено на рис. 4.6. Из этих данных видно, что через 15 мин степень конверсии фенантрена составляет 60%, а образовавшиеся алкил-производнйе на 70% состоят из моноизопропилфенантрена. С увеличением времени реакции повышается выход ди- и поли-замещенных фенантренов. [c.162]

    Нафталин и полициклические углеводороды — фенантрен, антрацен, хризен, пиреп, как и бензол, подчиняются правилу Хюк-келя — содержат (4п + 2) я-электронов на связывающих молекулярных орбиталях. Молекулы этих углеводородов плоские, для них характерны высокие значения энергий сопряжения и комплекс свойств аренов. Б частности, все эти углеводороды, как и бензол, легко вступают в реакции электрофильного замещения. [c.153]


    Ароматические соединения тоже могут проявлять свойства диенов [649]. Бензол чрезвычайно малореакционноспособен по отнощению к диенофилам сообщается, что лишь очень небольшое число диенофилов (один из них — дегидробензол) дает с ним аддукты Дильса — Альдера [650]. Нафталин и фенантрен также весьма устойчивы в этой реакции, хотя нафталин вступает в реакцию присоединения по Дильсу — Альдеру при высоком давлении [651]. Однако антрацен и другие соединения, содержащие по крайней мере три линейно конденсированных бензольных кольца, легко вступают в реакцию Дильса — Альдера. Весьма интересное соединение — тринтицен — можно синтезировать по реакции Дильса — Альдера между антраценом и дегидробензолом [652]  [c.239]

    Аналогично бензолу ведет себя нафталин. При его крекинге жидкие продукты разложения не образуются, а получаются только продукты конденсации (динафтил) и газ, богатый водородом. Такое направление реакции свойственно и трехкольчатым ароматическим антрацену и фенантрену. Установлено, что некоторые, еще более сложные по структуре ароматические углеводороды термически устойчивы. Так, коронен, имеющий структуру  [c.28]

    Для объяснения выходов ароматики и конденсированных систем при крекинге были использованы положения этиленовой теории с тем только отличием от последней, что бутадиен как промежуточный продукт на пути превращения в ароматику и конденсированные соединения сам возникаег вследствие полимеризации этилена с последующей дегидрогенизацией бутилена до бутадиена. Шестичленные ненасыщенные циклические углеводороды образуются в результате реакций бутадиена с этиленом. Нафталин является продуктом конденсации бензола с бутадиеном, а нз нафталина аналогичным путем могут получаться антрацен и фенантрен [8]. [c.18]

    Индан, а также 1-, 2-, 4- и 5-метилинданы были найдены с помощью метода инфракрасной спектроскопии,в лигроиновой фракции одной из американских нефтей [100]. Индан обнаружен и советскими исследователями [101]. С помощью фотохимических реакций с малеиновым ангидридом в присутствии сенсибилизатора (бензофенона) из норийской нефти выделены и идентифицированы фенантрен, 1-метил-, 2-метил-, 3-метил-, 9-метил-, 9-этил-, 9-бутил-, [c.227]

    Посредством реакций замещения получено также несколько сульфокислот полициклических соединений. Нагревание 9Д0-ди-хлорантрацена с сульфитом натрия в автоклаве [969а] дает соответствующую дисульфокислоту. Из 9,10-дихлораятрацен-2-сульфокислоты получена трисульфокислота [9696]. Бром в 10-бром-фенантрене весьма медленно взаимодействует с раствором сульфита натрия, вероятно, вследствие взаимной нерастворимости обоих реагентов натриевая соль 10-бромфенантрен-З-сульфо-кислоты превращается при 260—270° в соль дисульфокислоты 9696]. [c.151]

    Механизм образования низкотемпературного ПУ исследовался [7-50] методом газового хроматографического анализа продуктов пиролиза, образующихся на поверхности осаждения до и в процессе отложения ПУ. Было установлено, что при 1120 С и давлении метана примерно 40 кПа отложение ПУ начинается после протекания упомянутой выше (рис. 7-20) серий последовательных реакций, в которых образуются ацетилен, этан, этилен, толуол, стирол, пропилен-бензол, нафталин, аценафтен, фенантрен, антрацен и флюорантен. Возникают также вещества с большей, чем у перечисленных, относительной молекулярной массой. Их идентификация затруднена в связи с их малым количеством. [c.455]

    Какие вещества образуются при действии на фенантрен 1) дихромата калия (H2SO4), 2) натрия и этилового спирта Напишите уравнения реакций. [c.218]

    Напишите уравнения реакций между веществами 1) фенантреном и бромом (РеВгз), 2) фенантре-ном и бромом (1 моль, на свету). Назовите полученные соединения. [c.218]

    Реакция применима и к негетероциклическим ароматическим соединениям. Так, бензол, нафталин и фенантрен были алкилированы под действием алкиллитиевых реагентов, хотя обычно эти субстраты металлируются (см. т. 2, реакцию 12-19) [163] нафталин был также алкилирован с помощью реактивов Гриньяра [164]. По-видимому, во исех этих случаях реакции также идут по. механизму присоединения — отщепления. [c.33]

    С помощью последнего реагента можно метилировать и некоторые гетероциклические соединет1я, например хинолин и такие конденсированные ароматические молекулы, как антрацен и фенантрен [167]. Особенно привлекательны реакции с серосодержащими карбанионами, поскольку ни один из указанных субстратов не удается метилировать по методу Фриделя — Крафтса (т. 2, реакция 11-13). Сообщалось также о введении не только метильной, но и других алкильных, в том числе замещенных алкильных групп в орго- и нора-положения ароматических нитросоединений при обработке алкиллитиевыми реагентами (или реактивами Гриньяра, но с меньшими выходами) [c.33]

    Как видно из табл. 8.9, самополяризуемость различных положений фенантрен. (кроме положения 4) коррелирует со скоростями реакции нитрования  [c.321]

    Фенантрен легко присоединяет молекулу брома в отсутствие катализатора на холоду, однако прн нагревании или в присутствии катализатора образуется монобромпроизводное фенантрена. Напишите уравнения реакций и объясните их механизм. Может ли дибромдигидрофенантрен рассматриваться в качестве пооме-жуточного соединения при образовании монобромфенантрена  [c.107]

    Диазотированный чис-2-аминостильбен в кислой среде в присутствии порошкообразной меди превращается в фенантрен, а в ее отсутствие — в 3-( -гид-роксибенЗ Ил)индазол. Объясните механизм этих реакций. [c.282]

    Эпоксисоединения, ацетиленовые соединения, олефины л карбинолы жирно-ароматического ряда, если они содержат не разветвленную епь, также вступают в реакцию Вильгеродта. Особенно хорошие результаты получаются в случае МРТНЛ-кетонов высших конденсированных ароматических систем, таких, как фенантрен или пирен. [c.852]

    Непосредственное введение группы H2 I в циклическое соединение называется реакцией хлорметилирования . В реакцию хлорметилирования вступают главным образом ароматические углеводороды (бензол, нафталин, антрацен, фенантрен, дифенил) и многие их производные. [c.317]

    Многие соединения чрезвычайно легко нитруются под действием азотной кислоты (фенантрен, антрацеи, нафталин, фенол и др.). Однако выделяющаяся при нитровании вода снижает концентрацию азотной кислоты и ослабляет нитрующий эффект, так как константа скорости нитро-раиия зависит от концентрации кислоты. Поэтому при применении в качестве нитрующего средства одной азотной кислоты испо.льзовать ее полностью ие пре1став.ляется возможным прн снижении концентрации кислоты до определенной величины реакция практически прекращается. Вместе с тем, разбавленная азотная кнслота при повышении температуры (температуру повышают с целью ускорения нитрования) чаще всего оказывает на органическое соединение в большей степени окислительное, чем нитрующее действие. [c.15]

    Многоядерные углеводороды можно также синтезировать путем дегидратации о-ацилдифенилметанов процесс этот называют циклодегидратацией [43, 44]. В качестве дегидратирующего агента используют или смесь бромистоводородной и уксусной кислот, или серную кислоту. В результате такого синтеза был получен ряд 9- и 10-алкил-н 9- и 10-арилантраценов, фенантренов и бензантраценов с удовлетворительными, а иногда и хорошими выходами. Первой стадией реакции, по-видимому, является протонирование с образованием сопряженной кислоты I, которая атакует в орто-положенне соседнего кольца собразованием комплекса П. Последний в свою очередь отдает сначала протон, а затем отщепляет воду, давая многоядерный углеводород П1 [45] [c.52]

    Поскольку диазосочетания по своей природе — это большей частью свободнорадикальные реакции, весьма любопытно, что можно упомянуть очень мало синтезов с медью или закисью меди в качестве катализаторов. При сочетании о-диазостильбенов с образованием фенантренов по Пшорру благоприятное действие оказывает добавление меди [13] возможно, что от этого выиграют и другие реакции сочетания. [c.70]

    Опыты с фенолом, крезолом, анизолом, метиловым эфиром м-крезола, нафтолами и их эфирами, резорцином, диметил-анилипом, фенантреном, антраценом и их гомологами производились с азотной кислотой (уд. в. 1,357) без добавки и с добавкой гидразинсульфата. Экспериментальноустановлено, что во втором случае реакция не наступала даже после длительного времени. [c.158]

    По опытным данным (табл. 3) вычислена кажущаяся энергия активации, которая равна 18,6 ккал/моль, получена затисимость окорооти реакции от кон1цеит1рации фенантрена и определ ен форм-альиый порядок реакции по фенантрену, равный 0,33. [c.35]


Смотреть страницы где упоминается термин Фенантрен реакции: [c.254]    [c.386]    [c.125]    [c.510]    [c.192]    [c.67]    [c.146]    [c.62]    [c.37]    [c.200]   
Полициклические углеводороды Том 1 (1971) -- [ c.79 , c.226 , c.227 , c.230 , c.367 , c.422 ]

Органическая химия Том 1 (1963) -- [ c.352 ]

Органическая химия Том 1 (1962) -- [ c.352 ]




ПОИСК





Смотрите так же термины и статьи:

Ацетил хлористый реакция с фенантреном

Бензоил хлористый реакция с фенантреном

Пропионил хлористый реакция с фенантреном

Фенантрен

Фенантрен реакция с акриловой кислотой



© 2025 chem21.info Реклама на сайте